3 resultados para MAMMALIAN INFECTION
em National Center for Biotechnology Information - NCBI
Resumo:
A recombinant adenovirus (rAd) expressing Cre recombinase derived from bacteriophage P1 has already been extensively used for the conditional gene activation and inactivation strategies in mammalian systems. In this study, we generated AxCAFLP, a rAd expressing FLP recombinase derived from Saccharomyces cerevisiae and carried out quantitative comparisons with Cre-expressing rAd in both in vitro and in cultured cells to provide another efficient gene regulation system in mammalian cells. In the in vitro experiments, the relative recombination efficiency of FLP expressed in 293 cells infected with FLP-expressing rAd was approximately one-thirtieth that of Cre even at 30°C, the optimum temperature for FLP activity, and was approximately one-ninetieth at 37°C. Co-infection experiments in HeLa cells using a target rAd conditionally expressing LacZ under the control of FLP showed that an FLP-expressing rAd, infected at a multiplicity of infection (MOI) of 5, was able to activate the transgene in almost 100% of HeLa cells whereas the Cre-expressing rAd was sufficient at an MOI of 0.2. Since an MOI of 5 is ordinarily used in rAd experiments, these results showed that the FLP-expressing rAd is useful for gene activation strategies and is probably applicable to a sequential gene regulation system in combination with Cre-expressing rAd in mammalian cells.
Resumo:
Resistance to virus infections in higher vertebrates is mediated in part through catalysis of RNA decay by the, interferon-regulated 2-5A system. A functional 2-5A system requires two enzymes, a 2-5A synthetase that produces 5'-phosphorylated, 2',5'-linked oligoadenylates (2-5A) in response to double-stranded RNA, and the 2-5A-dependent RNase L. We have coexpressed these human enzymes in transgenic tobacco plants by using a single plasmid containing the cDNAs for both human RNase L and a low molecular weight form of human 2-5A synthetase under control of different, constitutive promoters. Expression of the human cDNAs in the transgenic plants was demonstrated from Northern blots, by specific enzyme assays, and by immunodetection (for RNase L). Infection of leaves, detached or in planta, of the coexpressing transgenic plants by tobacco mosaic virus, alfalfa [correction of alfafa] mosaic virus, or tobacco etch virus resulted in necrotic lesions. In contrast, leaves expressing 2-5A synthetase or RNase L alone and leaves containing the plasmid vector alone produced typical systemic infections. While alfalfa mosaic virus produced lesions only in the inoculated leaves regardless of the concentration of virus in the inoculum, high, but not low, levels of tobacco etch virus inoculum resulted in escape of virus to uninoculated leaves. Nevertheless, there was a substantial reduction of tobacco etch virus yield as measured by ELISA assay in the coexpressing transgenic plants. These results indicate that expression of a mammalian 2-5A system in plants provides resistance to virus infections.
Resumo:
This paper describes the use of the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) as a vector for gene delivery into mammalian cells. A modified AcMNPV virus was prepared that carried the Escherichia coli lacZ reporter gene under control of the Rous sarcoma virus promoter and mammalian RNA processing signals. This modified baculovirus was then used to infect a variety of mammalian cell lines. After infection of the human liver cell lines HepG2, >25% of the cells showed high-level expression of the transduced gene. Over 70% of the cells in primary cultures of rat hepatocytes showed expression of beta-galactosidase after exposure to the virus. Cell lines from other tissues showed less or no expression of lacZ after exposure to the virus. The block to expression in less susceptible cells does not appear to result from the ability to be internalized by the target cell but rather by events subsequent to viral entry. The onset of lacZ expression occurred within 6 hr of infection in HepG2 cells and peaked 12-24 hr postinfection. Because AcMNPV is able to replicate only in insect hosts, is able to carry large (>15 kb) inserts, and is a highly effective gene delivery vehicle for primary cultures of hepatocytes, AcMNPV may be a useful vector for genetic manipulation of liver cells.