18 resultados para MAILLARD REACTION-PRODUCTS

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lysyl oxidase (EC 1.4.3.13) oxidizes peptidyl lysine to peptidyl aldehyde residues within collagen and elastin, thus initiating formation of the covalent cross-linkages that insolubilize these extracellular proteins. Recent findings raise the possibility that this enzyme may also function intracellularly. The present study provides evidence by immunocytochemical confocal microscopy, Western blot analysis, enzyme assays, and chemical analyses for lysyl oxidase reaction products that this enzyme is present and active within rat vascular smooth muscle cell nuclei. Confocal microscopy indicates its presence within nuclei of 3T3 fibroblasts, as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In birds and mammals T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T-cell antigen receptors (TCRs). To gain further insight into the evolutionary significance of the γδ T-cell lineage, the present studies sought to define the chicken TCRγ locus. A splenic cDNA library was screened with two polymerase chain reaction products obtained from genomic DNA using primers for highly conserved regions of TCR and immunoglobulin genes. This strategy yielded cDNA clones with characteristics of mammalian TCR γ chains, including canonical residues considered important for proper folding and stability. Northern blot analysis with the TCRγ cDNA probe revealed 1.9-kb transcripts in the thymus, spleen, and a γδ T-cell line, but not in B or αβ T-cell lines. Three multimember Vγ subfamilies, three Jγ gene segments, and a single constant region Cγ gene were identified in the avian TCRγ locus. Members of each of the three Vγ subfamilies were found to undergo rearrangement in parallel during the first wave of thymocyte development. TCRγ repertoire diversification was initiated on embryonic day 10 by an apparently random pattern of V-Jγ recombination, nuclease activity, and P- and N-nucleotide additions to generate a diverse repertoire of avian TCRγ genes early in ontogeny.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To quantify the reactions of nitric oxide (NO) with hemoglobin under physiological conditions and to test models of NO transport on hemoglobin, we have developed an assay to measure NO–hemoglobin reaction products in normal volunteers, under basal conditions and during NO inhalation. NO inhalation markedly raised total nitrosylated hemoglobin levels, with a significant arterial–venous gradient, supporting a role for hemoglobin in the transport and delivery of NO. The predominant species accounting for this arterial–venous gradient is nitrosyl(heme)hemoglobin. NO breathing increases S-nitrosation of hemoglobin β-chain cysteine 93, however only to a fraction of the level of nitrosyl(heme)hemoglobin and without a detectable arterial–venous gradient. A strong correlation between methemoglobin and plasma nitrate formation was observed, suggesting that NO metabolism is a primary physiological cause of hemoglobin oxidation. Our results demonstrate that NO–heme reaction pathways predominate in vivo, NO binding to heme groups is a rapidly reversible process, and S-nitrosohemoglobin formation is probably not a primary transport mechanism for NO but may facilitate NO release from heme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 μm) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wealth of evidence supports increased NO (NO⋅) in asthma, but its roles are unknown. To investigate how NO participates in inflammatory airway events in asthma, we measured NO⋅ and NO⋅ chemical reaction products [nitrite, nitrate, S-nitrosothiols (SNO), and nitrotyrosine] before, immediately and 48 h after bronchoscopic antigen (Ag) challenge of the peripheral airways in atopic asthmatic individuals and nonatopic healthy controls. Strikingly, NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} was the only NO⋅ derivative to increase during the immediate Ag-induced asthmatic response and continued to increase over 2-fold at 48 h after Ag challenge in contrast to controls [P < 0.05]. NO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{-}}}\end{equation*}\end{document} was not affected by Ag challenge at 10 min or 48 h after Ag challenge. Although SNO was not detectable in asthmatic airways at baseline or immediately after Ag, SNO increased during the late response to levels found in healthy controls. A model of NO⋅ dynamics derived from the current findings predicts that NO⋅ may have harmful effects through formation of peroxynitrite, but also subserves an antioxidant role by consuming reactive oxygen species during the immediate asthmatic response, whereas nitrosylation during the late asthmatic response generates SNO, safe reservoirs for removal of toxic NO⋅ derivatives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many cellular responses to stimulation of cell-surface receptors by extracellular signals are transmitted across the plasma membrane by hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2), which is cleaved into diacylglycerol and inositol-1,4,5-tris-phosphate by phosphoinositide-specific phospholipase C (PI-PLC). We present structural, biochemical, and RNA expression data for three distinct PI-PLC isoforms, StPLC1, StPLC2, and StPLC3, which were cloned from a guard cell-enriched tissue preparation of potato (Solanum tuberosum) leaves. All three enzymes contain the catalytic X and Y domains, as well as C2-like domains also present in all PI-PLCs. Analysis of the reaction products obtained from PIP2 hydrolysis unequivocally identified these enzymes as genuine PI-PLC isoforms. Recombinant StPLCs showed an optimal PIP2-hydrolyzing activity at 10 μm Ca2+ and were inhibited by Al3+ in equimolar amounts. In contrast to PI-PLC activity in plant plasma membranes, however, recombinant enzymes could not be activated by Mg2+. All three stplc genes are expressed in various tissues of potato, including leaves, flowers, tubers, and roots, and are affected by drought stress in a gene-specific manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The covalent joining of topoisomerases to DNA is normally a transient step in the reaction cycle of these important enzymes. However, under a variety of circumstances, the covalent complex is converted to a long-lived or dead-end product that can result in chromosome breakage and cell death. We have discovered and partially purified an enzyme that specifically cleaves the chemical bond that joins the active site tyrosine of topoisomerases to the 3' end of DNA. The reaction products made by the purified enzyme on a variety of model substrates indicate that the enzyme cleanly hydrolyzes the tyrosine-DNA phosphodiester linkage, thereby liberating a DNA terminated with a 3' phosphate. The wide distribution of this phosphodiesterase in eukaryotes and its specificity for tyrosine linked to the 3' end but not the 5' end of DNA suggest that it plays a role in the repair of DNA trapped in complexes involving eukaryotic topoisomerase I.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mycoinsecticides are being used for the control of many insect pests as an environmentally acceptable alternative to chemical insecticides. A key aim of much recent work has been to increase the speed of kill and so improve commercial efficacy of these biocontrol agents. This might he achieved by adding insecticidal genes to the fungus, an approach considered to have enormous potential for the improvement of biological pesticides. We report here the development of a genetically improved entomopathogenic fungus. Additional copies of the gene encoding a regulated cuticle-degrading protease (Pr1) from Metarhizium anisopliae were inserted into the genome of M. anisopliae such that Pr1 was constitutively overproduced in the hemolymph of Manduca sexta, activating the prophenoloxidase system. The combined toxic effects of Pr1 and the reaction products of phenoloxidase caused larvae challenged with the engineered fungus to exhibit a 25% reduction in time of death and reduced food consumption by 40% compared to infections by the wild-type fungus. In addition, infected insects were rapidly melanized, and the resulting cadavers were poor substrates for fungal sporulation. Thus, environmental persistence of the genetically engineered fungus is reduced, thereby providing biological containment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclic terpenes and terpenoids are found throughout nature. They comprise an especially important class of compounds from plants that mediate plant- environment interactions, and they serve as pharmaceutical agents with antimicrobial and anti-tumor activities. Molecular comparisons of several terpene cyclases, the key enzymes responsible for the multistep cyclization of C10, C15, and C20 allylic diphosphate substrates, have revealed a striking level of sequence similarity and conservation of exon position and size within the genes. Functional domains responsible for a terminal enzymatic step were identified by swapping regions approximating exons between a Nicotiana tabacum 5-epi-aristolochene synthase (TEAS) gene and a Hyoscyamus muticus vetispiradiene synthase (HVS) gene and by characterization of the resulting chimeric enzymes expressed in bacteria. While exon 4 of the TEAS gene conferred specificity for the predominant reaction products of the tobacco enzyme, exon 6 of the HVS gene conferred specificity for the predominant reaction products of the Hyoscyamus enzyme. Combining these two functional domains of the TEAS and HVS genes resulted in a novel enzyme capable of synthesizing reaction products reflective of both parent enzymes. The relative ratio of the TEAS and HVS reaction products was also influenced by the source of exon 5 present in the new chimeric enzymes. The association of catalytic activities with conserved but separate exonic domains suggests a general means for generating additional novel terpene cyclases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental question in the basic biology of aging is whether there is a universal aging process. If indeed such a process exists, one would expect that it develops at a higher rate in short- versus long-lived species. We have quantitated pentosidine, a marker of glycoxidative stress in skin collagen from eight mammalian species as a function of age. A curvilinear increase was modeled for all species, and the rate of increase correlated inversely with maximum life-span. Dietary restriction, a potent intervention associated with increased life-span, markedly inhibited glycoxidation rate in the rodent. On the assumption that collagen turnover rate is primarily influenced by the crosslinking due to glycoxidation, these results suggest that there is a progressive age-related deterioration of the process that controls the collagen glycoxidation rate. Thus, the ability to withstand damage due to glycoxidation and the Maillard reaction may be under genetic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Daphniphyllum alkaloids are a group of highly complex polycyclic alkaloids. Examination of the structures if several members of this family of natural products led to a hypothesis about their mode of biosynthesis (depicted in Scheme SI). Based on this hypothetical biosynthetic pathway, a laboratory synthesis was designed that incorporated as a key transformation the novel one-pot transformation of dialdehyde 24 to pentacyclic unsaturated amine 25. This process turned out to be an exceptionally efficient way to construct the pentacyclic nucleus of the Daphniphyllum alkaloids. However, a purely fortuitous discovery, resulting from accidental use of methylamine rather than ammonia, led to a great improvement in the synthesis and suggests an even more attractive possible biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products “glycotoxins.” Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3́end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.