39 resultados para Lymphoid organs

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memory is a hallmark of immunity. Memory carried by antibodies is largely responsible for protection against reinfection with most known acutely lethal infectious agents and is the basis for most clinically successful vaccines. However, the nature of long-term B cell and antibody memory is still unclear. B cell memory was studied here after infection of mice with the rabies-like cytopathic vesicular stomatitis virus, the noncytopathic lymphocytic choriomeningitis virus (Armstrong and WE), and after immunization with various inert viral antigens inducing naive B cells to differentiate either to plasma cells or memory B cells in germinal centers of secondary lymphoid organs. The results show that in contrast to very low background levels against internal viral antigens, no significant neutralizing antibody memory was observed in the absence of antigen and suggest that memory B cells (i) are long-lived in the absence of antigen, nondividing, and relatively resistant to irradiation, and (ii) must be stimulated by antigen to differentiate to short-lived antibody-secreting plasma cells, a process that is also efficient in the bone marrow and always depends on radiosensitive, specific T help. Therefore, for vaccines to induce long-term protective antibody titers, they need to repeatedly provide, or continuously maintain, antigen in minimal quantities over a prolonged time period in secondary lymphoid organs or the bone marrow for sufficient numbers of long-lived memory B cells to mature to short-lived plasma cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Peripheral blood mononuclear cells and lymphoid tissues from HIV-infected individuals display high levels of "tissue" transglutaminase (tTG) with respect to seronegative persons. In asymptomatic individuals, > 80% of the circulating CD4+ T cells synthesize tTG protein and the number of these cells matches the level of apoptosis detected in the peripheral blood mononuclear cells from the same patients. In HIV-infected lymph nodes tTG protein is localized in large number of cells (macrophages, follicular dendritic cells, and endothelial cells), showing distinctive morphological and biochemical features of apoptosis as well as in lymphocytes and syncytia. These findings demonstrate that during the course of HIV infection, high levels of apoptosis also occur in the accessory cells of lymphoid organs. The increased concentration of epsilon(gamma-glutamyl)lysine isodipeptide, the degradation product of tTG cross-linked proteins, observed in the blood of HIV-infected individuals demonstrates that the enzyme accumulated in the dying cells actively cross-links intracellular proteins. The enhanced levels of epsilon(gamma-glutamyl)lysine in the blood parallels the progression of HIV disease, suggesting that the isodipeptide determination might be a useful method to monitor the in vivo rate of apoptosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4+ T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4+ cells during gene therapy of AIDS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early in ontogeny, the secondary lymphoid organs become populated with numerous cells of mesodermal origin which forms both the lymphoid and stromal elements. The critical receptor/ligand interactions necessary for lymphoid organogenesis to occur are for the most part unknown. Although lymphotoxin-α (LTα) has been shown to be required for normal lymph node, Peyer’s patch, and splenic development, it is unclear if soluble LTα3, and/or cell-bound lymphotoxin-αβ (LTαβ) mediate these developmental events. Here we report that blocking LTαβ/lymphotoxin-β receptor (LTβR) interaction in vivo by generating mice which express a soluble LTβR–Fc fusion protein driven by the human cytomegalovirus promoter results in an array of anatomic abnormalities affecting both the spleen and Peyer’s patches, but not the lymph nodes. These results demonstrate that surface LTαβ ligand plays a critical role in normal lymphoid organ development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendritic cells (DC) have been thought to represent a family of closely related cells with similar functions and developmental pathways. The best-characterized precursors are the epidermal Langerhans cells, which migrate to lymphoid organs and become activated DC in response to inflammatory stimuli. Here, we demonstrate that a large subset of DC in the T cell-dependent areas of human lymphoid organs are nonactivated cells and belong to a separate lineage that can be identified by high levels of the interleukin 3 receptor α chain (IL-3Rαhi). The CD34+IL-3Rαhi DC progenitors are of myeloid origin and are distinct from those that give rise to Langerhans cells in vitro. The IL-3Rαhi DC furthermore appear to migrate to lymphoid organs independently of inflammatory stimuli or foreign antigens. Thus, DC are heterogeneous with regard to function and ontogeny.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantitative and qualitative defects in CD1-restricted natural killer T cells have been reported in several autoimmune-prone strains of mice, including the nonobese diabetic (NOD) mouse. These defects are believed to be associated with the emergence of spontaneous autoimmunity. Here we demonstrate that both CD1d-null NOD and CD1d-null NOD/BDC2.5 T cell receptor transgenic mice have an accelerated onset and increased incidence of diabetes when compared with CD1d+/− and CD1d+/+ littermates. The acceleration of disease did not seem to result from changes in the T helper (Th)1/Th2 balance because lymphocytes purified from lymphoid organs and pancreatic islets of wild-type and CD1d-null mice secreted equivalent amounts of IFN-γ and IL-4 after stimulation. In contrast, the pancreata of CD1d-null mice harbored significantly higher numbers of activated memory T cells expressing the chemokine receptor CCR4. Notably, the presence of these T cells was associated with immunohistochemical evidence of increased destructive insulitis. Thus, CD1d-restricted T cells are critically important for regulation of the spontaneous disease process in NOD mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To analyze the role of alpha4-integrins in lymphoma metastasis, sublines of the T-cell lymphoma LB were generated by retrovirus-mediated gene transfer that differ exclusively in the expression of alpha4-integrins. Using LB-alpha4 and control LB-NTK cells, we demonstrate that expression of alpha4-integrins strongly suppresses metastasis formation of LB lymphoma cells in secondary lymphoid organs such as spleen, mesenteric and peripheral lymph nodes, or Peyer's patches after i.v. injection into syngeneic BALB/c mice. Moreover, alpha4-integrin expression inhibited development of metastatic tumors in liver, lung, and kidney. Expansion of LB lymphoma cells in bone marrow was not affected by alpha4-integrin expression. In vivo migration assays using 51Cr-labeled lymphoma cells demonstrated that low-metastatic LB-alpha4 cells accumulated with the same efficiency as high-metastatic LB-NTK cells in all target organs examined and were even enriched in mucosal lymphoid organs. Collectively, these results indicate that alpha4-integrins inhibit metastasis formation of lymphoma cells at a stage subsequent to the invasion of target organs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism by which tolerance is induced via systemic administration of high doses of aqueous antigen has been analyzed by using mice transgenic for a T-cell receptor specific for the influenza virus hemagglutinin (HA) peptide comprising amino acids 126-138. After intravenous injection of 750 (but not 75) micrograms of HA peptide, a state of hyporesponsiveness was rapidly induced. In the thymus, in situ apoptosis in the cortex and at the corticomedullary junction was responsible for a synchronous and massive deletion of CD4+ CD8+ thymocytes. In secondary lymphoid organs, HA-reactive T cells were initially activated but were hyporesponsive at the single cell level. After 3 days, however, those cells were rapidly deleted, at least partially, through an apoptotic process. Therefore, both thymic and peripheral apoptosis, in addition to T-cell receptor desensitization, contribute to high-dose tolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian immune system must specifically recognize and eliminate foreign invaders but refrain from damaging the host. This task is accomplished in part by the production of a large number of T lymphocytes, each bearing a different antigen receptor to match the enormous variety of antigens present in the microbial world. However, because antigen receptor diversity is generated by a random mechanism, the immune system must tolerate the function of T lymphocytes that by chance express a self-reactive antigen receptor. Therefore, during early development, T cells that are specific for antigens expressed in the thymus are physically deleted. The population of T cells that leaves the thymus and seeds the secondary lymphoid organs contains helpful cells that are specific for antigens from microbes but also potentially dangerous T cells that are specific for innocuous extrathymic self antigens. The outcome of an encounter by a peripheral T cell with these two types of antigens is to a great extent determined by the inability of naive T cells to enter nonlymphoid tissues or to be productively activated in the absence of inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immune system's ability to distinguish self and nonself is essential for both host defense against foreign agents and protection of self-antigens from autoimmune destruction. Such discrimination is complicated by extensive structural homology shared between foreign and self antigens. One hypothesis to explain the development of an autoimmune response is that some B cells activated by foreign antigen acquire, through somatic mutation, specificity for both the eliciting foreign antigen and self antigen. If such clones arise frequently, there must be a mechanism for their elimination. We have analyzed the extent of autoreactivity arising in a nonautoimmune host during the response to a foreign antigen. To overcome the process of apoptosis in primary B cells that might routinely eliminate autoreactive clones, we generated B-cell hybridomas from spleen cells of immunized mice by using a fusion partner constitutively expressing bcl-2. Multiple lines were obtained that recognize simultaneously the hapten phosphorylcholine and the self antigen double-stranded DNA. This dual specificity was not present early but was detected by day 10 after immunization. Some of these cross-reactive antibodies deposit in kidneys in a pattern similar to what is seen in autoimmune disease. These results demonstrate that autoantibodies arise at a high frequency as part of a response to foreign antigen. It has previously been shown that autoreactivity is regulated by central deletion; these data demonstrate a need for negative selection in peripheral lymphoid organs also, to regulate autoantibodies acquiring their self-specificity by somatic mutation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In patients with rheumatoid arthritis the synovial membrane of the affected joint is infiltrated with lymphoid cells which may be arranged in structures resembling germinal centers. We have directly isolated such infiltrates to determine whether B-cell clones within them are selected and expanded in a process analogous to that which normally takes place in the germinal centers in secondary lymphoid organs. The data suggest that an antigen-driven process leads to the accumulation of B cells in the synovial membrane. The finding of identical sequences in consecutive sections suggests that under conditions of chronic stimulation, memory B cells may enter a stage of differentiation in which they proliferate without further accumulation of somatic mutations. Further we see intraclonal diversity which underlines the germinal center-like character of these infiltrates and demonstrates that a microenvironment is built up in this nonlymphoid tissue which supports antigen-dependent differentiation of B cells. This is the first demonstration, to our knowledge, of a germinal center-like reaction outside lymphoid tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UDP-N-acetylgalactosamine (GalNAc): polypeptide N-acetylgalactosaminyltransferase (polypeptide GalNAc-T) catalyzes transfer of the monosaccharide GalNAc to serine and threonine residues, thereby initiating O-linked oligosaccharide biosynthesis. Previous studies have suggested the possibility of multiple polypeptide GalNAc-Ts, although attachment of saccharide units to polypeptide or lipid in generating oligosaccharide structures in vertebrates has been dependent upon the activity of single gene products. To address this issue and to determine the relevance of Oglycosylation variation in T-cell ontogeny, we have directed Cre/loxP mutagenic recombination to the polypeptide GalNAc-T locus in gene-targeted mice. Resulting deletion in the catalytic region of polypeptide GalNAc-T occurred to completion on both alleles in thymocytes and was found in peripheral T cells, but not among other cell types. Thymocyte O-linked oligosaccharide formation persisted in the absence of a functional targeted polypeptide GalNAc-T allele as determined by O-glycan-specific lectin binding. T-cell development and colonization of secondary lymphoid organs were also normal. These results indicate a complexity in vertebrate O-glycan biosynthesis that involves multiple polypeptide GalNAc-Ts. We infer the potential for protein-specific O-glycan formation governed by distinct polypeptide GalNAc-Ts.