2 resultados para Lunar eclipses.
em National Center for Biotechnology Information - NCBI
Resumo:
An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.
Resumo:
Mathematical and experimental simulations predict that external fertilization is unsuccessful in habitats characterized by high water motion. A key assumption of such predictions is that gametes are released in hydrodynamic regimes that quickly dilute gametes. We used fucoid seaweeds to examine whether marine organisms in intertidal and subtidal habitats might achieve high levels of fertilization by restricting their release of gametes to calm intervals. Fucus vesiculosus L. (Baltic Sea) released high numbers of gametes only when maximal water velocities were below ca. 0.2 m/s immediately prior to natural periods of release, which occur in early evening in association with lunar cues. Natural fertilization success measured at two sites was always close to 100%. Laboratory experiments confirmed that (i) high water motion inhibits gamete release by F. vesiculosus and by the intertidal fucoids Fucus distichus L. (Maine) and Pelvetia fastigiata (J. Ag.) DeToni (California), and (ii) showed that photosynthesis is required for high gamete release. These data suggest that chemical changes in the boundary layer surrounding adults during photosynthesis and/or mechanosensitive channels may modulate gamete release in response to changing hydrodynamic conditions. Therefore, sensitivity to environmental factors can lead to successful external fertilization, even for species living in turbulent habitats.