4 resultados para Low-index surfaces

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis is recognized as important for normal cellular homeostasis in multicellular organisms. Although there have been great advances in our knowledge of the molecular events regulating apoptosis, much less is known about the receptors on phagocytes responsible for apoptotic cell recognition and phagocytosis or the ligands on apoptotic cells mediating such recognition. The observations that apoptotic cells are under increased oxidative stress and that oxidized low-density lipoprotein (OxLDL) competes with apoptotic cells for macrophage binding suggested the hypothesis that both OxLDL and apoptotic cells share oxidatively modified moieties on their surfaces that serve as ligands for macrophage recognition. To test this hypothesis, we used murine monoclonal autoantibodies that bind to oxidation-specific epitopes on OxLDL. In particular, antibodies EO6 and EO3 recognize oxidized phospholipids, including 1-palmitoyl 2-(5-oxovaleroyl) phosphatidylcholine (POVPC), and antibodies EO12 and EO14 recognize malondialdehyde-lysine, as in malondialdehyde-LDL. Using FACS analysis, we demonstrated that each of these EO antibodies bound to apoptotic cells but not to normal cells, whereas control IgM antibodies did not. Confocal microscopy demonstrated cell-surface expression of the oxidation-specific epitopes on apoptotic cells. Furthermore, each of these antibodies inhibited the phagocytosis of apoptotic cells by elicited peritoneal macrophages, as did OxLDL. In addition, an adduct of POVPC with BSA also effectively prevented phagocytosis. These data demonstrate that apoptotic cells express oxidation-specific epitopes—including oxidized phospholipids—on their cell surface, and that these serve as ligands for recognition and phagocytosis by elicited macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pivotal role of G proteins in sensory, hormonal, inflammatory, and proliferative responses has provoked intense interest in understanding how they interact with their receptors and effectors. Nonetheless, the locations of the receptors and effector binding sites remain poorly characterized, although nearly complete structures of the alphabetagamma heterotrimeric complex are available. Here we apply evolutionary trace (ET) analysis [Lichtarge, O., Bourne, H. R. & Cohen, F. E. (1996) J. Mol. Biol. 257, 342-358] to propose plausible locations for these sites. On each subunit, ET identifies evolutionarily selected surfaces composed of residues that do not vary within functional subgroups and that form spatial clusters. Four clusters correctly identify subunit interfaces, and additional clusters on Galpha point to likely receptor or effector binding sites. Our results implicate the conformationally variable region of Galpha in an effector binding role. Furthermore the range of predicted interactions between the receptor and Galphabetagamma, is sufficiently limited that we can build a low resolution and testable model of the receptor-G protein complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.