13 resultados para Low-grade heat

em National Center for Biotechnology Information - NCBI


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carcinoma of the cervix is one of the most common malignancies. Papanicolaou (Pap) smear tests have reduced mortality by up to 70%. Nevertheless their interpretation is notoriously difficult with high false-negative rates and frequently fatal consequences. We have addressed this problem by using affinity-purified antibodies against human proteins that regulate DNA replication, namely Cdc6 and Mcm5. These antibodies were applied to sections and smears of normal and diseased uterine cervix by using immunoperoxidase or immunofluorescence to detect abnormal precursor malignant cells. Antibodies against Cdc6 and Mcm5 stain abnormal cells in cervical smears and sections with remarkably high specificity and sensitivity. Proliferation markers Ki-67 and proliferating cell nuclear antigen are much less effective. The majority of abnormal precursor malignant cells are stained in both low-grade and high-grade squamous intraepithelial lesions. Immunostaining of cervical smears can be combined with the conventional Pap stain so that all the morphological information from the conventional method is conserved. Thus antibodies against proteins that regulate DNA replication can reduce the high false-negative rate of the Pap smear test and may facilitate mass automated screening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare nucleated fetal cells circulate within maternal blood. Noninvasive prenatal diagnosis by isolation and genetic analysis of these cells is currently being undertaken. We sought to determine if genetic evidence existed for persistent circulation of fetal cells from prior pregnancies. Venous blood samples were obtained from 32 pregnant women and 8 nonpregnant women who had given birth to males 6 months to 27 years earlier. Mononuclear cells were sorted by flow cytometry using antibodies to CD antigens 3, 4, 5, 19, 23, 34, and 38. DNA within sorted cells, amplified by PCR for Y chromosome sequences, was considered predictive of a male fetus or evidence of persistent male fetal cells. In the 32 pregnancies, male DNA was detected in 13 of 19 women carrying a male fetus. In 4 of 13 pregnancies with female fetuses, male DNA was also detected. All of the 4 women had prior pregnancies; 2 of the 4 had prior males and the other 2 had terminations of pregnancy. In 6 of the 8 nonpregnant women, male DNA was detected in CD34+CD38+ cells, even in a woman who had her last son 27 years prior to blood sampling. Our data demonstrate the continued maternal circulation of fetal CD34+ or CD34+CD38+ cells from a prior pregnancy. The prolonged persistence of fetal progenitor cells may represent a human analogue of the microchimerism described in the mouse and may have significance in development of tolerance of the fetus. Pregnancy may thus establish a long-term, low-grade chimeric state in the human female.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gene encoding the rice 16.9-kDa class I low-molecular-mass (LMM) heat-shock protein (HSP), Oshsp16.9, was introduced into Escherichia coli using the pGEX-2T expression vector to analyze the possible function of this LMM HSP under heat stress. It is known that E. coli does not normally produce class I LMM HSPs. We compared the survivability of E. coli XL1-Blue cells transformed with a recombinant plasmid containing a glutathione S-transferase (GST)–Oshsp16.9 fusion protein (pGST-FL cells) with the control E. coli cells transformed with the pGEX-2T vector (pGST cells) under heat-shock (HS) after isopropyl β-d-thiogalactopyranoside induction. The pGST-FL cells demonstrated thermotolerance at 47.5°C, a treatment that was lethal to the pGST cells. When the cell lysates from these two E. coli transformants were heated at 55°C, the amount of protein denatured in the pGST-FL cells was 50% less than that of the pGST cells. Similar results as pGST-FL cells were obtained in pGST-N78 cells (cells produced a fusion protein with only the N-terminal 78 aa in the Oshsp16.9 portion) but not in pGST-C108 cells (cells produced a fusion protein with C-terminal 108 aa in the Oshsp16.9 portion). The acquired thermotolerant pGST-FL cells synthesized three types of HSPs, including the 76-, 73-, and 64-kDa proteins according to their abundance at a lethal temperature of 47.5°C. This finding indicates that a plant class I LMM HSP, when effectively expressed in transformed prokaryotic cells that do not normally synthesize this class of LMM HSPs, may directly or indirectly increase thermotolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trigger factor (TF) in Escherichia coli is a molecular chaperone with remarkable properties: it has prolyl-isomerase activity, associates with nascent polypeptides on ribosomes, binds to GroEL, enhances GroEL’s affinity for unfolded proteins, and promotes degradation of certain polypeptides. Because the latter effects appeared larger at 20°C, we studied the influence of temperature on TF expression. Unlike most chaperones (e.g., GroEL), which are heat-shock proteins (hsps), TF levels increased progressively as growth temperature decreased from 42°C to 16°C and even rose in cells stored at 4°C. Upon temperature downshift from 37°C to 10°C or exposure to chloramphenicol, TF synthesis was induced, like that of many cold-shock proteins. We therefore tested if TF expression might be important for viability at low temperatures. When stored at 4°C, E. coli lose viability at exponential rates. Cells with reduced TF content die faster, while cells overexpressing TF showed greater viability. Although TF overproduction protected against cold, it reduced viability at 50°C, while TF deficiency enhanced viability at this temperature. By contrast, overproduction of GroEL/ES, or hsps generally, while protective against high temperatures, reduced viability at 4°C, which may explain why expression of hsps is suppressed in the cold. Thus, TF represents an example of an E. coli protein which protects cells against low temperatures. Moreover, the differential induction of TF at low temperatures and hsps at high temperatures appears to provide selective protection against these opposite thermal extremes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytosolic 70-kDa heat shock proteins (Hsp70s), Ssa and Ssb, of Saccharomyces cerevisiae are functionally distinct. Here we report that the ATPase activities of these two classes of Hsp70s exhibit different kinetic properties. The Ssa ATPase has properties similar to those of other Hsp70s studied, such as DnaK and Hsc70. Ssb, however, has an unusually low steady-state affinity for ATP but a higher maximal velocity. In addition, the ATPase activity of Hsp70s, like that of Ssa1, depends on the addition of K+ whereas Ssb activity does not. Suprisingly, the isolated 44-kDa ATPase domain of Ssb has a Km and Vmax for ATP hydrolysis similar to those of Ssa, rather than those of full length Ssb. Analysis of Ssa/Ssb fusion proteins demonstrates that the Ssb peptide-binding domain fused to the Ssa ATPase domain generates an ATPase of relatively high activity and low steady-state affinity for ATP similar to that of native Ssb. Therefore, at least some of the biochemical differences between the ATPases of these two classes of Hsp70s are not intrinsic to the ATPase domain itself. The differential influence of the peptide-binding domain on the ATPase domain may, in part, explain the functional uniqueness of these two classes of Hsp70s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ascorbate peroxidases are important enzymes that detoxify hydrogen peroxide within the cytosol and chloroplasts of plant cells. To better understand their role in oxidative stress tolerance, the transcriptional regulation of the apx1 gene from Arabidopsis was studied. The apx1 gene was expressed in all tested organs of Arabidopsis; mRNA levels were low in roots, leaves, and stems and high in flowers. Steady-state mRNA levels in leaves or cell suspensions increased after treatment with methyl viologen, ethephon, high temperature, and illumination of etiolated seedlings. A putative heat-shock cis element found in the apx1 promoter was shown to be recognized by the tomato (Lycopersicon esculentum) heat-shock factor in vitro and to be responsible for the in vivo heat-shock induction of the gene. The heat-shock cis element also contributed partially to the induction of the gene by oxidative stress. By using in vivo dimethyl sulfate footprinting, we showed that proteins interacted with a G/C-rich element found in the apx1 promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In all organisms, mild heat pretreatments induce tolerance to high temperatures. In the yeast Saccharomyces cerevisiae, such pretreatments strongly induce heat-shock protein (Hsp) 104, and hsp104 mutations greatly reduce high-temperature survival, indicating Hsp1O4 plays a critical role in induced thermotolerance. Surprisingly, however, a heat-shock transcription factor mutation (hsf1-m3) that blocks the induction of Hsps does not block induced thermotolerance. To resolve these apparent contradictions, we reexamined Hsp expression in hsf1-m3 cells. HsplO4 was expressed at a higher basal level in this strain than in other S. cerevisiae strains. Moreover, whereas the hsf1-m3 mutation completely blocked the induction of Hsp26 by heat, it did not block the induction of Hsp1O4. HSP104 could not be deleted in hsf1-m3 cells because the expression of heat-shock factor (and the viability of the strain) requires nonsense suppression mediated by the yeast prion [PSI+], which in turn depends upon Hsp1O4. To determine whether the level of Hsp1O4 expressed in hsf1-m3 cells is sufficient for thermotolerance, we used heterologous promoters to regulate Hsp1O4 expression in other strains. In the presence of other inducible factors (with a conditioning pretreatment), low levels of Hsp1O4 are sufficient to provide full thermotolerance. More remarkably, in the absence of other inducible factors (without a pretreatment), high levels of Hsp1O4 are sufficient. We conclude that Hsp1O4 plays a central role in ameliorating heat toxicity. Because Hsp1O4 is nontoxic and highly conserved, manipulating the expression of Hsp1OO proteins provides an excellent prospect for manipulating thermotolerance in other species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cause for death after lethal heat shock is not well understood. A shift from low to intermediate temperature causes the induction of heat-shock proteins in most organisms. However, except for HSP104, a convincing involvement of heat-shock proteins in the development of stress resistance has not been established in Saccharomyces cerevisiae. This paper shows that oxidative stress and antioxidant enzymes play a major role in heat-induced cell death in yeast. Mutants deleted for the antioxidant genes catalase, superoxide dismutase, and cytochrome c peroxidase were more sensitive to the lethal effect of heat than isogenic wild-type cells. Overexpression of catalase and superoxide dismutase genes caused an increase in thermotolerance. Anaerobic conditions caused a 500- to 20,000-fold increase in thermotolerance. The thermotolerance of cells in anaerobic conditions was immediately abolished upon oxygen exposure. HSP104 is not responsible for the increased resistance of anaerobically grown cells. The thermotolerance of anaerobically grown cells is not due to expression of heat-shock proteins. By using an oxidation-dependent fluorescent molecular probe a 2- to 3-fold increase in fluorescence was found upon heating. Thus, we conclude that oxidative stress is involved in heat-induced cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dioxin (aryl hydrocarbon) receptor is a ligand-dependent basic helix-loop-helix (bHLH) factor that binds to xenobiotic response elements of target promoters upon heterodimerization with the bHLH partner factor Arnt. Here we have replaced the bHLH motif of the dioxin receptor with a heterologous DNA-binding domain to create fusion proteins that mediate ligand-dependent transcriptional enhancement in yeast (Saccharomyces cerevisiae). Previously, our experiments indicated that the ligand-free dioxin receptor is stably associated with the 90-kDa heat shock protein, hsp90. To investigate the role of hsp90 in dioxin signaling we have studied receptor function in a yeast strain where hsp90 expression can be down-regulated to about 5% relative to wild-type levels. At low levels of hsp90, ligand-dependent activation of the chimeric dioxin receptor construct was almost completely inhibited, whereas the activity of a similar chimeric construct containing the structurally related Arnt factor was not affected. Moreover, a chimeric dioxin receptor construct lacking the central ligand- and hsp90-binding region of the receptor showed constitutive transcriptional activity in yeast that was not impaired upon down-regulation of hsp90 expression levels. Thus, these data suggest that hsp90 is a critical determinant of conditional regulation of dioxin receptor function in vivo via the ligand-binding domain.