6 resultados para Lorenz energy cycle

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesin is a dimeric motor protein that transports organelles in a stepwise manner toward the plus-end of microtubules by converting the energy of ATP hydrolysis into mechanical work. External forces can influence the behavior of kinesin, and force-velocity curves have shown that the motor will slow down and eventually stall under opposing loads of ≈5 pN. Using an in vitro motility assay in conjunction with a high-resolution optical trapping microscope, we have examined the behavior of individual kinesin molecules under two previously unexplored loading regimes: super-stall loads (>5 pN) and forward (plus-end directed) loads. Whereas some theories of kinesin function predict a reversal of directionality under high loads, we found that kinesin does not walk backwards under loads of up to 13 pN, probably because of an irreversible transition in the mechanical cycle. We also found that this cycle can be significantly accelerated by forward loads under a wide range of ATP concentrations. Finally, we noted an increase in kinesin’s rate of dissociation from the microtubule with increasing load, which is consistent with a load dependent partitioning between two recently described kinetic pathways: a coordinated-head pathway (which leads to stepping) and an independent-head pathway (which is static).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NMR spectroscopy was used to test recent proposals that the additional energy required for brain activation is provided through nonoxidative glycolysis. Using localized NMR spectroscopic methods, the rate of C4-glutamate isotopic turnover from infused [1-(13)C]glucose was measured in the somatosensory cortex of rat brain both at rest and during forepaw stimulation. Analysis of the glutamate turnover data using a mathematical model of cerebral glucose metabolism showed that the tricarboxylic acid cycle flux [(V(TCA)] increased from 0.49 +/- 0.03 at rest to 1.48 +/- 0.82 micromol/g/min during stimulation (P < 0.01). The minimum fraction of C4-glutamate derived from C1-glucose was approximately 75%, and this fraction was found in both the resting and stimulated rats. Hence, the percentage increase in oxidative cerebral metabolic rate of glucose use (CMRglc) equals the percentage increases in V(TCA) and cerebral metabolic rate of oxygen consumption (CMRO2). Comparison with previous work for the same rat model, which measured total CMRglc [Ueki, M., Linn, F. & Hossman, K. A. (1988) J. Cereb. Blood Flow Metab. 8, 486-4941, indicates that oxidative CMRglc supplies the majority of energy during sustained brain activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5' untranslated region of the mRNA encoding the iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH). This interaction is developmentally regulated during Drosophila embryogenesis. In a cell-free translation system, recombinant IRP-1 imposes highly specific translational repression on a reporter mRNA bearing the SDH IRE, and the translation of SDH-Ip mRNA is iron regulated in D. melanogaster Schneider cells. In mammals, an IRE was identified in the 5' untranslated regions of mitochondrial aconitase mRNAs from two species. Recombinant IRP-1 represses aconitase synthesis with similar efficiency as ferritin IRE-controlled translation. The interaction between mammalian IRPs and the aconitase IRE is regulated by iron, nitric oxide, and oxidative stress (H2O2), indicating that these three signals can control the expression of mitochondrial aconitase mRNA. Our results identify a regulatory link between energy and iron metabolism in vertebrates and invertebrates, and suggest biological functions for the IRE/IRP regulatory system in addition to the maintenance of iron homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free radicals nitric oxide and superoxide anion react to form peroxynitrite (ONOO-), a highly toxic oxidant species. In vivo formation of ONOO- has been demonstrated in shock and inflammation. Herein we provide evidence that cytotoxicity in cells exposed to ONOO- is mediated by DNA strand breakage and the subsequent activation of the DNA repair enzyme poly(ADP ribose) synthetase (PARS). Exposure to ONOO- (100 microM to 1 mM) inhibited mitochondrial respiration in cultured J774 macrophages and in rat aortic smooth muscle cells. The loss of cellular respiration was rapid, peaking 1-3 h after ONOO- exposure, and reversible, with recovery after a period of 6-24 h. The inhibition of mitochondrial respiration was paralleled by a dose-dependent increase in DNA strand breakage, reaching its maximum at 20-30 min after exposure to ONOO-. We observed a dose-dependent increase in the activity of PARS in cells exposed to ONOO-. Inhibitors of PARS such as 3-aminobenzamide (1 mM) prevented the inhibition of cellular respiration in cells exposed to ONOO-. Activation of PARS by ONOO--mediated DNA strand breakage resulted in a significant decrease in intracellular energy stores, as reflected by a decline of intracellular NAD+ and ATP content. 3-Aminobenzamide prevented the loss of NAD+ and ATP in cells exposed to ONOO-. In contrast, impairment of cellular respiration by the addition of the nitric oxide donors S-nitroso-N-acetyl-DL-penicillamine or diethyltriamine nitric oxide complex, was not associated with the development of DNA strand breaks, in concentrations up to 1 mM, and was largely refractory to PARS inhibition. Our results suggest that DNA damage and activation of PARS, an energy-consuming futile repair cycle, play a central role in ONOO--mediated cellular injury.