5 resultados para Long-term supplier relationship
em National Center for Biotechnology Information - NCBI
Resumo:
We use mathematical models to study the relationship between HIV and the immune system during the natural course of infection and in the context of different antiviral treatment regimes. The models suggest that an efficient cytotoxic T lymphocyte (CTL) memory response is required to control the virus. We define CTL memory as long-term persistence of CTL precursors in the absence of antigen. Infection and depletion of CD4+ T helper cells interfere with CTL memory generation, resulting in persistent viral replication and disease progression. We find that antiviral drug therapy during primary infection can enable the development of CTL memory. In chronically infected patients, specific treatment schedules, either including deliberate drug holidays or antigenic boosts of the immune system, can lead to a re-establishment of CTL memory. Whether such treatment regimes would lead to long-term immunologic control deserves investigation under carefully controlled conditions.
Resumo:
The long-term kinetics of T cell production following highly active antiretroviral therapy (HAART) were investigated in blood and lymph node in a group of HIV-infected subjects at early stage of established infection and prospectively studied for 72 wk. Before HAART, CD4 and CD8 T cell turnover was increased. However, the total number of proliferating CD4+ T lymphocytes, i.e., CD4+Ki67+ T lymphocytes, was not significantly different in HIV-infected (n = 73) and HIV-negative (n = 15) subjects, whereas proliferating CD8+Ki67+ T lymphocytes were significantly higher in HIV-infected subjects. After HAART, the total body number of proliferating CD4+Ki67+ T lymphocytes increased over time and was associated with an increase of both naive and memory CD4+ T cells. The maximal increase (2-fold) was observed at week 36, whereas at week 72 the number of proliferating CD4+ T cells dropped to baseline levels, i.e., before HAART. The kinetics of the fraction of proliferating CD4 and CD8 T cells were significantly correlated with the changes in the total body number of these T cell subsets. These results demonstrate a direct relationship between ex vivo measures of T cell production and quantitative changes in total body T lymphocyte populations. This study provides advances in the delineation of the kinetics of T cell production in HIV infection in the presence and/or in the absence of HAART.
Resumo:
To investigate the proposed molecular characteristics of sugar-mediated repression of photosynthetic genes during plant acclimation to elevated CO2, we examined the relationship between the accumulation and metabolism of nonstructural carbohydrates and changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression in leaves of Arabidopsis thaliana exposed to elevated CO2. Long-term growth of Arabidopsis at high CO2 (1000 μL L−1) resulted in a 2-fold increase in nonstructural carbohydrates, a large decrease in the expression of Rubisco protein and in the transcript of rbcL, the gene encoding the large subunit of Rubisco (approximately 35–40%), and an even greater decline in mRNA of rbcS, the gene encoding the small subunit (approximately 60%). This differential response of protein and mRNAs suggests that transcriptional/posttranscriptional processes and protein turnover may determine the final amount of leaf Rubisco protein at high CO2. Analysis of mRNA levels of individual rbcS genes indicated that reduction in total rbcS transcripts was caused by decreased expression of all four rbcS genes. Short-term transfer of Arabidopsis plants grown at ambient CO2 to high CO2 resulted in a decrease in total rbcS mRNA by d 6, whereas Rubisco content and rbcL mRNA decreased by d 9. Transfer to high CO2 reduced the maximum expression level of the primary rbcS genes (1A and, particularly, 3B) by limiting their normal pattern of accumulation through the night period. The decreased nighttime levels of rbcS mRNA were associated with a nocturnal increase in leaf hexoses. We suggest that prolonged nighttime hexose metabolism resulting from exposure to elevated CO2 affects rbcS transcript accumulation and, ultimately, the level of Rubisco protein.
Resumo:
Long-term potentiation (LTP) has been shown to be impaired in mice deficient in the brain-derived neurotrophic factor (BDNF) gene, as well as in a number of other knockout animals. Despite its power the gene-targeting approach is always fraught with the danger of looking at the cumulative direct and indirect effects of the absence of a particular gene rather than its immediate function. The re-expression of a specific gene at a selective time point and at a specific site in gene-defective mutants presents a potent procedure to overcome this limitation and to evaluate the causal relationship between the absence of a particular gene and the impairment of a function in gene-defective animals. Here we demonstrate that the re-expression of the BDNF gene in the CA1 region almost completely restores the severely impaired LTP in hippocampal slices of BDNF-deficient mice. The results therefore provide strong evidence for the direct involvement of BDNF in the process of LTP.
Resumo:
Erythropoietin (Epo)-responsive anemia is a common and debilitating complication of chronic renal failure and human immunodeficiency virus infection. Current therapy for this condition involves repeated intravenous or subcutaneous injections of recombinant Epo. In this report, we describe the development of a novel muscle-based gene transfer approach that produces long-term expression of physiologically significant levels of Epo in the systemic circulation of mice. We have constructed a plasmid expression vector, pVRmEpo, that contains the murine Epo cDNA under the transcriptional control of the cytomegalovirus immediate early (CMV-IE) promoter, the CMV-IE 5' untranslated region, and intron A. A single intramuscular (i.m.) injection of as little as 10 micrograms of this plasmid into immunocompetent adult mice produced physiologically significant elevations in serum Epo levels and increased hematocrits from preinjection levels of 48 +/- 0.4% to levels of 64 +/- 3.3% 45 days after injection. Hematocrits in these animals remained elevated at greater than 60% for at least 90 days after a single i.m. injection of 10 micrograms of pVRmEpo. We observed a dose-response relationship between the amount of plasmid DNA injected and subsequent elevations in hematocrits. Mice injected once with 300 micrograms of pVRmEpo displayed 5-fold increased serum Epo levels and elevated hematocrits of 79 +/- 3.3% at 45 days after injection. The i.m. injected plasmid DNA remained localized to the site of injection as assayed by the PCR. We conclude that i.m. injection of plasmid DNA represents a viable nonviral gene transfer method for the treatment of acquired and inherited serum protein deficiencies.