2 resultados para Long Island
em National Center for Biotechnology Information - NCBI
Resumo:
To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes.
Resumo:
A 7000-year-long sequence of environmental change during the Holocene has been reconstructed for a central Pacific island (Mangaia, Cook Islands). The research design used geomorphological and palynological methods to reconstruct vegetation history, fire regime, and erosion and depositional rates, whereas archaeological methods were used to determine prehistoric Polynesian land use and resource exploitation. Certain mid-Holocene environmental changes are putatively linked with natural phenomena such as eustatic sea-level rise and periodic El Niño-Southern Oscillation events. However, the most significant changes were initiated between 2500 and 1800 years and were directly or indirectly associated with colonization by seafaring Polynesian peoples. These human-induced effects included major forest clearance, increased erosion of volcanic hillsides and alluvial deposition in valley bottoms, significant increases in charcoal influx, extinctions of endemic terrestrial species, and the introduction of exotic species.