16 resultados para Liver function

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hepatic endothelial fenestrae are dynamic structures that act as a sieving barrier to control the extensive exchange of material between the blood and the liver parenchyma. Alterations in the number or diameter of fenestrae by drugs, hormones, toxins, and diseases can produce serious perturbations in liver function. Previous studies have shown that disassembly of actin by cytochalasin B or latrunculin A caused a remarkable increase in the number of fenestrae and established the importance of the actin cytoskeleton in the numerical dynamics of fenestrae. So far, however, no mechanism or structure has been described to explain the increase in the number of fenestrae. Using the new actin inhibitor misakinolide, we observed a new structure that appears to serve as a fenestrae-forming center in hepatic endothelial cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report herein that expression of α2β1 integrin increased human erythroleukemia K562 transfectant (KX2C2) cell movement after extravasation into liver parenchyma. In contrast, a previous study demonstrated that α2β1 expression conferred a stationary phenotype to human rhabdomyosarcoma RD transfectant (RDX2C2) cells after extravasation into the liver. We therefore assessed the adhesive and migratory function of α2β1 on KX2C2 and RDX2C2 cells using a α2β1-specific stimulatory monoclonal antibody (mAb), JBS2, and a blocking mAb, BHA2.1. In comparison with RDX2C2 cells, KX2C2 were only weakly adherent to collagen and laminin. JBS2 stimulated α2β1-mediated interaction of KX2C2 cells with both collagen and laminin resulting in increases in cell movement on both matrix proteins. In the presence of Mn2+, JBS2-stimulated adhesion on collagen beyond an optimal level for cell movement. In comparison, an increase in RDX2C2 cell movement on collagen required a reduction in its adhesive strength provided by the blocking mAb BHA2.1. Consistent with these in vitro findings, in vivo videomicroscopy revealed that α2β1-mediated postextravasation cell movement of KX2C2 cells in the liver tissue could also be stimulated by JBS2. Thus, results demonstrate that α2β1 expression can modulate postextravasation cell movement by conferring either a stationary or motile phenotype to different cell types. These findings may be related to the differing metastatic activities of different tumor cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteases as well as alterations in intracellular calcium have important roles in hepatic preservation-reperfusion injury, and increased calpain activity recently has been demonstrated in liver allografts. Experiments were designed to evaluate (i) hepatic cytosolic calpain activity during different periods of cold ischemia (CI), rewarming, or reperfusion, and (ii) effects of inhibition of calpain on liver graft function using the isolated perfused rat liver and arterialized orthotopic liver transplantation models. Calpain activity was assayed using the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methyl coumarin (AMC) and expressed as mean ± SD pmol AMC released/min per mg of cytosolic protein. Calpain activity rose significantly after 24 hr of CI in University of Wisconsin solution and further increased with longer preservation. Activity also increased within 30 min of rewarming, peaking at 120 min. Increased durations of CI preceding rewarming resulted in significantly higher activity (P < 0.01). Calpain activity increased rapidly upon reperfusion and was significantly enhanced by previous CI (P < 0.01). Calpain inhibition with Cbz-Val-Phe methyl ester significantly decreased aspartate aminotransferase released in the isolated perfused rat liver perfusate (P < 0.05). Duration of survival after orthotopic liver transplantation using livers cold-preserved for 40 hr was also significantly increased (P < 0.05) with calpain inhibitor. In conclusion, calpain proteases are activated during each phase of transplantation and are likely to play an important role in the mechanisms of preservation-reperfusion injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipoproteins are emulsion particles that consist of lipids and apolipoproteins. Their natural function is to transport lipids and/or cholesterol to different tissues. We have taken advantage of the hydrophobic interior of these natural emulsions to solubilize DNA. Negatively charged DNA was first complexed with cationic lipids containing a quaternary amine head group. The resulting hydrophobic complex was extracted by chloroform and then incorporated into reconstituted chylomicron remnant particles (≈100 nm in diameter) with an efficiency ≈65%. When injected into the portal vein of mice, there were ≈5 ng of a transgene product (luciferase) produced per mg of liver protein per 100 μg injected DNA. This level of transgene expression was ≈100-fold higher than that of mice injected with naked DNA. However, such a high expression was not found after tail vein injection. Histochemical examination revealed that a large number of parenchymal cells and other types of cells in the liver expressed the transgene. Gene expression in the liver increased with increasing injected dose, and was nearly saturated with 50 μg DNA. At this dose, the expression was kept at high level in the liver for 2 days and then gradually reduced and almost disappeared by 7 days. However, by additional injection at day 7, gene expression in the liver was completely restored. By injection of plasmid DNA encoding human α1-antitrypsin, significant concentrations of hAAT were detected in the serum of injected animals. This is the first nonviral vector that resembles a natural lipoprotein carrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer T (NKT) cells constitute a distinct subpopulation of T cells with a unique antigen specificity, prompt effector functions, and an unusual tissue distribution. NKT cells are especially abundant in the liver, but their physiological function in this organ remains unclear. In the present study, we examined the possible contribution of NKT cells to a murine model of hepatitis induced by i.v. injection of Con A. CD1-deficient mice lacking NKT cells were highly resistant to Con A-induced hepatitis. Adoptive transfer of hepatic NKT cells isolated from wild-type mice, but not from FasL-deficient gld mice, sensitized CD1-deficient mice to Con A-induced hepatitis. Furthermore, adoptive transfer of hepatic mononuclear cells from wild-type mice, but not from CD1-deficient mice, sensitized gld mice to Con A-induced hepatitis. Upon Con A administration, hepatic NKT cells rapidly up-regulated cell surface FasL expression and FasL-mediated cytotoxicity. At the same time, NKT cells underwent apoptosis leading to their rapid disappearance in the liver. These results implicated FasL expression on liver NKT cells in the pathogenesis of Con A-induced hepatitis, suggesting a similar pathogenic role in human liver diseases such as autoimmune hepatitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) mediates the redistribution of lipids among cells and is expressed at highest levels in brain and liver. Human apoE exists in three major isoforms encoded by distinct alleles (ɛ2, ɛ3, and ɛ4). Compared with APOE ɛ2 and ɛ3, APOE ɛ4 increases the risk of cognitive impairments, lowers the age of onset of Alzheimer’s disease (AD), and decreases the response to AD treatments. Besides age, inheritance of the APOE ɛ4 allele is the most important known risk factor for the development of sporadic AD, the most common form of this illness. Although numerous hypotheses have been advanced, it remains unclear how APOE ɛ4 might affect cognition and increase AD risk. To assess the effects of distinct human apoE isoforms on the brain, we have used the neuron-specific enolase (NSE) promoter to express human apoE3 or apoE4 at similar levels in neurons of transgenic mice lacking endogenous mouse apoE. Compared with NSE-apoE3 mice and wild-type controls, NSE-apoE4 mice showed impairments in learning a water maze task and in vertical exploratory behavior that increased with age and were seen primarily in females. These findings demonstrate that human apoE isoforms have differential effects on brain function in vivo and that the susceptibility to apoE4-induced deficits is critically influenced by age and gender. These results could be pertinent to cognitive impairments observed in human APOE ɛ4 carriers. NSE-apoE mice and similar models may facilitate the preclinical assessment of treatments for apoE-related cognitive deficits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respiration inhibition and marked sensitization of the mitochondrial permeability transition pore. Mitochondria from heterozygous mice, with a partial deficiency in MnSOD, showed evidence of increased proton leak, inhibition of respiration, and early and rapid accumulation of mitochondrial oxidative damage. Furthermore, chronic oxidative stress in the heterozygous mice resulted in an increased sensitization of the mitochondrial permeability transition pore and the premature induction of apoptosis, which presumably eliminates the cells with damaged mitochondria. Mice with normal MnSOD levels show the same age-related mitochondrial decline as the heterozygotes but occurring later in life. The premature decline in mitochondrial function in the heterozygote was associated with the compensatory up-regulation of oxidative phosphorylation enzyme activity. Thus mitochondrial reactive oxygen species production, oxidative stress, functional decline, and the initiation of apoptosis appear to be central components of the aging process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nrf2, a member of the “cap ‘n collar” group of transcription factors, is important for protecting cells against oxidative damage. We investigated its role in the detoxification of acetaminophen [N-acetyl-p-aminophenol (APAP)]-induced hepatotoxicity. When Nrf2 knockout (Nrf2−/−) and wild-type mice were given APAP by i.p. injection, the Nrf2−/− mice were highly susceptible to APAP treatment. With doses of APAP that were tolerated by wild-type mice, the Nrf2−/− mice died of liver failure. When hepatic glutathione was depleted after a dose of 400 mg/kg of APAP, the wild-type mice were able to compensate and regain the normal glutathione level. In contrast, the glutathione level in the Nrf2−/− mice was not compensated and remained low. This was because of the decrease in the gene expression of gcsH and gcsL as well as gss in the livers of the Nrf2−/− mice. In addition, the expression of ugt1a6 and gstpi that detoxify APAP by conjugation was also decreased. This increased susceptibility of the Nrf2−/− mice to APAP, because of an impaired capacity to replenish their glutathione stores, compounded with a decreased detoxification capability, highlights the importance of Nrf2 in the regulation of glutathione synthesis and cellular detoxification processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portal hypertension resulting from increased intrahepatic resistance is a common complication of chronic liver diseases and a leading cause of death in patients with liver cirrhosis, a scarring process of the liver that includes components of both increased fibrogenesis and wound contraction. A reduced production of nitric oxide (NO) resulting from an impaired enzymatic function of endothelial NO synthase and an increased contraction of hepatic stellate cells (HSCs) have been demonstrated to contribute to high intrahepatic resistance in the cirrhotic liver. 2-(Acetyloxy) benzoic acid 3-(nitrooxymethyl) phenyl ester (NCX-1000) is a chemical entity obtained by adding an NO-releasing moiety to ursodeoxycholic acid (UDCA), a compound that is selectively metabolized by hepatocytes. In this study we have examined the effect of NCX-1000 and UDCA on liver fibrosis and portal hypertension induced by i.p. injection of carbon tetrachloride in rats. Our results demonstrated that although both treatments reduced liver collagen deposition, NCX-1000, but not UDCA, prevented ascite formation and reduced intrahepatic resistance in carbon tetrachloride-treated rats as measured by assessing portal perfusion pressure. In contrast to UDCA, NCX-1000 inhibited HSC contraction and exerted a relaxing effect similar to the NO donor S-nitroso-N-acetylpenicillamine. HSCs were able to metabolize NCX-1000 and release nitrite/nitrate in cell supernatants. In aggregate these data indicate that NCX-1000, releasing NO into the liver microcirculation, may provide a novel therapy for the treatment of patients with portal hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Core binding factor beta (CBF beta) is considered to be a transcriptional coactivator that dimerizes with transcription factors core binding factor alpha 1 (CBFA1), -2, and -3, and enhances DNA binding capacity of these transcription factors. CBF beta and CBFA2, which is also called acute myeloid leukemia 1 gene, are frequently involved in chromosomal translocations in human leukemia. To elucidate the function of CBF beta, mice carrying a mutation in the Cbfb locus were generated. Homozygous mutant embryos died between embryonic days 11.5-13.5 due to hemorrhage in the central nervous system. Mutant embryos had primitive erythropoiesis in yolk sac but lacked definitive hematopoiesis in fetal liver. In the yolk sac of mutant embryos, no erythroid or myeloid progenitors of definitive hematopoietic origin were detected, and the expression of flk-2/flt-3, the marker gene for early precursor cells of definitive hematopoiesis, was absent. These data suggest that Cbfb is essential for definitive hematopoiesis in liver, especially for the commitment to early hematopoietic precursor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overexpression of the c-myc oncogene is associated with a variety of both human and experimental tumors, and cooperation of other oncogenes and growth factors with the myc family are critical in the evolution of the malignant phenotype. The interaction of hepatocyte growth factor (HGF) with c-myc during hepatocarcinogenesis in a transgenic mouse model has been analyzed. While sustained overexpression of c-myc in the liver leads to cancer, coexpression of HGF and c-myc in the liver delayed the appearance of preneoplastic lesions and prevented malignant conversion. Furthermore, tumor promotion by phenobarbital was completely inhibited in the c-myc/HGF double transgenic mice, whereas phenobarbital was an effective tumor promoter in the c-myc single transgenic mice. The results indicate that HGF may function as a tumor suppressor during early stages of liver carcinogenesis, and suggest the possibility of therapeutic application for this cytokine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Promoter and silencer elements of the immediate 5' flanking region of the gene coding for human factor VII were identified and characterized. The major transcription start site, designated as +1, was determined by RACE (rapid amplification of cDNA ends) analysis of human liver cDNA and was found to be located 50 bp upstream from the translation start site. Two minor transcription start sites were found at bp +32 bp and +37. Progressive deletions of the 5' flanking region were fused to the chloramphenicol acetyltransferase reporter gene and transient expression in HepG2 and HeLa cells was measured. Two promoter elements that were essential for hepatocyte-specific transcription were identified. The first site, FVIIP1, located at bp -19 to +1, functioned independently of orientation or position and contributed about one-third of the promoter activity of the factor VII gene. Electrophoretic mobility-shift, competition, and anti-hepatocyte nuclear factor 4 (HNF4) antibody supershift experiments demonstrated that this site contained an HNF-4 binding element homologous to the promoters in the genes coding for factor IX and factor X. The second site, FVIIP2, located at bp -50 to -26, also functioned independent of orientation or position and contributed about two thirds of the promoter activity in the gene for factor VII. Functional assays with mutant sequences demonstrated that a 10-bp G + C-rich core sequence which shares 90% sequence identity with the prothrombin gene enhancer was essential for the function of the second site. Mobility-shift and competition assays suggested that this site also binds hepatic-specific factors as well as the transcription factor Sp1. Two silencer elements located upstream of the promoter region spanning bp -130 to -103 (FVIIS1 site) and bp -202 to -130 (FVIIS2) were also identified by reporter gene assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze mechanisms of liver repopulation, we transplanted normal hepatocytes into syngeneic rats deficient in dipeptidyl peptidase IV activity. When isolated hepatocytes were injected into splenic pulp, cells promptly migrated into hepatic sinusoids. To examine whether transplanted hepatocytes entered liver plates and integrated with host hepatocytes, we analyzed sharing of hepatocyte-specific gap junctions and bile canaliculi. Colocalization studies showed gap junctions uniting adjacent transplanted and host hepatocytes in liver plates. Visualization of bile canalicular domains in transplanted and host hepatocytes with dipeptidyl peptidase IV and ATPase activities, respectively, demonstrated hybrid bile canaliculi, which excreted a fluorescent conjugated bile acid analogue. These results indicate that transplanted hepatocytes swiftly overcome mechanical barriers in hepatic sinusoids to enter liver plates and join host cells. Integration into liver parenchyma should physiologically regulate the function or disposition of transplanted hepatocytes and benefit applications such as gene therapy.