2 resultados para Linum usitatissimum L
em National Center for Biotechnology Information - NCBI
Resumo:
DNA probes from the L6 rust resistance gene of flax (Linum usitatissimum) hybridize to resistance genes at the unlinked M locus, indicating sequence similarities between genes at the two loci. Genetic and molecular data indicate that the L locus is simple and contains a single gene with 13 alleles and that the M locus is complex and contains a tandem array of genes of similar sequence. Thus the evolution of these two related loci has been different. The consequence of the contrasting structures of the L and M loci on the evolution of different rust resistance specificities can now be investigated at the molecular level
Resumo:
Allene oxide synthase (AOS) mediates the conversion of lipoxygenase-derived fatty acid hydroperoxides to unstable allene epoxides, which supply the precursors for the synthesis of the phytohormone jasmonic acid (JA). In this study the characterization of AOS gene expression in flax (Linum usitatissimum) is reported. AOS was constitutively expressed in different organs of flax plants. Additionally, AOS gene expression was enhanced after mechanical wounding in both the directly damaged leaves and in the systemic tissue located distal to the treated leaves. This wound-induced accumulation of AOS required the de novo biosynthesis of other unknown proteins involved in the signaling pathway modulating wound-induced AOS gene expression. Furthermore, the wound-induced AOS mRNA accumulation was correlated with the increase in the levels of JA. Both JA and its precursor, 12-oxo-phytodienoic acid, activated AOS gene expression in a dose-dependent manner. Thus, JA could activate its own biosynthetic pathway in flax leaves. Moreover, neither salicylic acid (SA) nor aspirin influenced AOS enzymatic activity. It is interesting that pretreatment with SA or aspirin inhibited wound-induced accumulation of AOS transcripts. These results suggest that a potent inhibition of JA biosynthetic capacity in leaves can be affected by SA or aspirin at the level of AOS gene expression.