3 resultados para Linguistic simplification

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type II DNA topoisomerases actively reduce the fractions of knotted and catenated circular DNA below thermodynamic equilibrium values. To explain this surprising finding, we designed a model in which topoisomerases introduce a sharp bend in DNA. Because the enzymes have a specific orientation relative to the bend, they act like Maxwell's demon, providing unidirectional strand passage. Quantitative analysis of the model by computer simulations proved that it can explain much of the experimental data. The required sharp DNA bend was demonstrated by a greatly increased cyclization of short DNA fragments from topoisomerase binding and by direct visualization with electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of text to speech is seen as an analysis of the input text to obtain a common underlying linguistic description, followed by a synthesis of the output speech waveform from this fundamental specification. Hence, the comprehensive linguistic structure serving as the substrate for an utterance must be discovered by analysis from the text. The pronunciation of individual words in unrestricted text is determined by morphological analysis or letter-to-sound conversion, followed by specification of the word-level stress contour. In addition, many text character strings, such as titles, numbers, and acronyms, are abbreviations for normal words, which must be derived. To further refine these pronunciations and to discover the prosodic structure of the utterance, word part of speech must be computed, followed by a phrase-level parsing. From this structure the prosodic structure of the utterance can be determined, which is needed in order to specify the durational framework and fundamental frequency contour of the utterance. In discourse contexts, several factors such as the specification of new and old information, contrast, and pronominal reference can be used to further modify the prosodic specification. When the prosodic correlates have been computed and the segmental sequence is assembled, a complete input suitable for speech synthesis has been determined. Lastly, multilingual systems utilizing rule frameworks are mentioned, and future directions are characterized.