3 resultados para Lind, Raimo: Mielikuvaoppiminen
em National Center for Biotechnology Information - NCBI
Resumo:
In a recent article [Khan, A. U., Kovacic, D., Kolbanovsky, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], the authors claimed that ONOO−, after protonation to ONOOH, decomposes into 1HNO and 1O2 according to a spin-conserved unimolecular mechanism. This claim was based partially on their observation that nitrosylhemoglobin is formed via the reaction of peroxynitrite with methemoglobin at neutral pH. However, thermochemical considerations show that the yields of 1O2 and 1HNO are about 23 orders of magnitude lower than those of ⋅NO2 and ⋅OH, which are formed via the homolysis of ONOOH. We also show that methemoglobin does not form with peroxynitrite any spectrally detectable product, but with contaminations of nitrite and H2O2 present in the peroxynitrite sample. Thus, there is no need to modify the present view of the mechanism of ONOOH decomposition, according to which initial homolysis into a radical pair, [ONO⋅ ⋅OH]cage, is followed by the diffusion of about 30% of the radicals out of the cage, while the rest recombines to nitric acid in the solvent cage.
Resumo:
Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility.