27 resultados para Light-cone and Coulomb

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromophore-assisted light inactivation (CALI) offers the only method capable of modulating specific protein activities in localized regions and at particular times. Here, we generalize CALI so that it can be applied to a wider range of tasks. Specifically, we show that CALI can work with a genetically inserted epitope tag; we investigate the effectiveness of alternative dyes, especially fluorescein, comparing them with the standard CALI dye, malachite green; and we study the relative efficiencies of pulsed and continuous-wave illumination. We then use fluorescein-labeled hemagglutinin antibody fragments, together with relatively low-power continuous-wave illumination to examine the effectiveness of CALI targeted to kinesin. We show that CALI can destroy kinesin activity in at least two ways: it can either result in the apparent loss of motor activity, or it can cause irreversible attachment of the kinesin enzyme to its microtubule substrate. Finally, we apply this implementation of CALI to an in vitro system of motor proteins and microtubules that is capable of self-organized aster formation. In this system, CALI can effectively perturb local structure formation by blocking or reducing the degree of aster formation in chosen regions of the sample, without influencing structure formation elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotretinoin (13-cis retinoic acid) is frequently prescribed for severe acne [Peck, G. L., Olsen, T. G., Yoder, F. W., Strauss, J. S., Downing, D. T., Pandya, M., Butkus, D. & Arnaud-Battandier, J. (1979) N. Engl. J. Med. 300, 329–333] but can impair night vision [Fraunfelder, F. T., LaBraico, J. M. & Meyer, S. M. (1985) Am. J. Ophthalmol. 100, 534–537] shortly after the beginning of therapy [Shulman, S. R. (1989) Am. J. Public Health 79, 1565–1568]. As rod photoreceptors are responsible for night vision, we administered isotretinoin to rats to learn whether night blindness resulted from rod cell death or from rod functional impairment. High-dose isotretinoin was given daily for 2 months and produced systemic toxicity, but this caused no histological loss of rod photoreceptors, and rod-driven electroretinogram amplitudes were normal after prolonged dark adaptation. Additional studies showed, however, that even a single dose of isotretinoin slowed the recovery of rod signaling after exposure to an intense bleaching light, and that rhodopsin regeneration was markedly slowed. When only a single dose was given, rod function recovered to normal within several days. Rods and cones both showed slow recovery from bleach after isotretinoin in rats and in mice. HPLC analysis of ocular retinoids after isotretinoin and an intense bleach showed decreased levels of rhodopsin chromophore, 11-cis retinal, and the accumulation of the biosynthetic intermediates, 11-cis and all-trans retinyl esters. Isotretinoin was also found to protect rat photoreceptors from light-induced damage, suggesting that strategies of altering retinoid cycling may have therapeutic implications for some forms of retinal and macular degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthetic organisms fuel their metabolism with light energy and have developed for this purpose an efficient apparatus for harvesting sunlight. The atomic structure of the apparatus, as it evolved in purple bacteria, has been constructed through a combination of x-ray crystallography, electron microscopy, and modeling. The detailed structure and overall architecture reveals a hierarchical aggregate of pigments that utilizes, as shown through femtosecond spectroscopy and quantum physics, elegant and efficient mechanisms for primary light absorption and transfer of electronic excitation toward the photosynthetic reaction center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of light intensity on antioxidants, antioxidant enzymes, and chlorophyll content was studied in common bean (Phaseolus vulgaris L.) exposed to excess Mn. Leaves of bean genotypes contrasting in Mn tolerance were exposed to two different light intensities and to excess Mn; light was controlled by shading a leaflet with filter paper. After 5 d of Mn treatment ascorbate was depleted by 45% in leaves of the Mn-sensitive genotype ZPV-292 and by 20% in the Mn-tolerant genotype CALIMA. Nonprotein sulfhydryl groups and glutathione reductase were not affected by Mn or light treatment. Ten days of Mn-toxicity stress increased leaf ascorbate peroxidase activity of cv ZPV-292 by 78% in low light and by 235% in high light, and superoxide dismutase activity followed a similar trend. Increases of ascorbate peroxidase and superoxide dismutase activity observed in cv CALIMA were lower than those observed in the susceptible cv ZPV-292. The cv CALIMA had less ascorbate oxidation under excess Mn-toxicity stress. Depletion of ascorbate occurred before the onset of chlorosis in Mn-stressed plants, especially in cv ZPV-292. Lipid peroxidation was not detected in floating leaf discs of mature leaves exposed to excess Mn. Our results suggest that Mn toxicity may be mediated by oxidative stress, and that the tolerant genotype may maintain higher ascorbate levels under stress than the sensitive genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a pale-green maize (Zea mays L.) mutant that fails to accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to test the working hypothesis that the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) by its Ca2+-insensitive protein-serine/threonine kinase (PEPC kinase) in the C4 mesophyll cytosol depends on cross-talk with a functional Calvin cycle in the bundle sheath. Wild-type (W22) and bundle sheath defective2-mutable1 (bsd2-m1) seeds were grown in a controlled environment chamber at 100 to 130 μmol m−2 s−1 photosynthetic photon flux density, and leaf tissue was harvested 11 d after sowing, following exposure to various light intensities. Immunoblot analysis showed no major difference in the amount of polypeptide present for several mesophyll- and bundle-sheath-specific photosynthetic enzymes apart from Rubisco, which was either completely absent or very much reduced in the mutant. Similarly, leaf net CO2-exchange analysis and in vitro radiometric Rubisco assays showed that no appreciable carbon fixation was occurring in the mutant. In contrast, the sensitivity of PEPC to malate inhibition in bsd2-m1 leaves decreased significantly with an increase in light intensity, and there was a concomitant increase in PEPC kinase activity, similar to that seen in wild-type leaf tissue. Thus, although bsd2-m1 mutant plants lack an operative Calvin cycle, light activation of PEPC kinase and its target enzyme are not grossly perturbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaves of the C4 plant maize have two major types of photosynthetic cells: a ring of five large bundle sheath cells (BSC) surrounds each vascular bundle and smaller mesophyll cells (MC) lie between the cylinders of bundle sheath cells. The enzyme ribulose bisphosphate carboxylase/oxygenase is encoded by nuclear rbcS and chloroplast rbcL genes. It is not present in MC but is abundant in adjacent BSC of green leaves. As reported previously, the separate regions of rbcS-m3, which are required for stimulating transcription of the gene in BSC and for suppressing expression of reporter genes in MC, were identified by an in situ expression assay; expression was not suppressed in MC until after leaves of dark-grown seedlings had been illuminated for 24 h. Now we have found that transient expression of rbcS-m3 reporter genes is stimulated in BSC via a red/far-red reversible phytochrome photoperception and signal transduction system but that blue light is required for suppressing rbcS-m3 reporter gene expression in MC. Blue light is also required for the suppression system to develop in MC. Thus, the maize gene rbcS-m3 contains certain sequences that are responsive to a phytochrome photoperception and signal transduction system and other regions that respond to a UVA/blue light photoperception and signal transduction system. Various models of "coaction" of plant photoreceptors have been advanced; these observations show the basis for one type of coaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent determination of the myosin head atomic structure has led to a new model of muscle contraction, according to which mechanical torque is generated in the catalytic domain and amplified by the lever arm made of the regulatory domain [Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. & Rayment, I. (1995) Biochemistry 34, 8960–8972]. A crucial aspect of this model is the ability of the regulatory domain to move independently of the catalytic domain. Saturation transfer–EPR measurements of mobility of these two domains in myosin filaments give strong support for this notion. The catalytic domain of the myosin head was labeled at Cys-707 with indane dione spin label; the regulatory domain was labeled at the single cysteine residue of the essential light chain and exchanged into myosin. The mobility of the regulatory domain in myosin filaments was characterized by an effective rotational correlation time (τR) between 24 and 48 μs. In contrast, the mobility of the catalytic domain was found to be τR = 5–9 μs. This difference in mobility between the two domains existed only in the filament form of myosin. In the monomeric form, or when bound to actin, the mobility of the two domains in myosin was indistinguishable, with τR = 1–4 μs and >1,000 μs, respectively. Therefore, the observed difference in filaments cannot be ascribed to differences in local conformations of the spin-labeled sites. The most straightforward interpretation suggests a flexible hinge between the two domains, which would have to stiffen before force could be generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine the role of microtubules in growth cone turning, we have compared the microtubule organization in growth cones advancing on uniform laminin substrates with their organization in growth cones turning at a laminin–tenascin border. The majority (82%) of growth cones on laminin had a symmetrical microtubule organization, in which the microtubules entering the growth cone splay out toward the periphery of the growth cone. Growth cones at tenascin borders had symmetrically arranged microtubules in only 34% of cases, whereas in the majority of cases the microtubules were displaced toward one-half of the growth cone, presumably stabilizing in the direction of the turn along the tenascin border. These results suggest that reorganization of microtubules could underlie growth cone turning. Further evidence for the involvement of microtubule rearrangement in growth cone turning was provided by experiments in which growth cones approached tenascin borders in the presence of nanomolar concentrations of the microtubule stabilizing compound, Taxol. Taxol altered the organization of microtubules in growth cones growing on laminin by restricting their distribution to the proximal regions of the growth cone and increasing their bundling. Taxol did not stop growth cone advance on laminin. When growing in the presence of Taxol, growth cones at tenascin borders were not able to turn and grow along the laminin–tenascin border, and consequently stopped at the border. Growth cones were arrested at borders for as long as Taxol was present (up to 6 h) without showing any signs of drug toxicity. These effects of Taxol were reversible. Together, these results suggest that microtubule reorganization in growth cones is a necessary event in growth cone turning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conidiation rhythm in the fungus Neurospora crassa is a model system for investigating the genetics of circadian clocks. Null mutants at the frq (frequency) locus (frq9 and frq10) make no functional frq gene products and are arrhythmic under standard conditions. The white-collar strains (wc-1 and wc-2) are insensitive to most effects of light, and are also arrhythmic. All three genes are proposed to be central components of the circadian oscillator. We have been investigating two mutants, cel (chain-elongation) and chol-1 (choline-requirer), which are defective in lipid synthesis and affect the period and temperature compensation of the rhythm. We have constructed the double mutant strains chol-1 frq9, chol-1 frq10, chol-1 wc-1, chol-1 wc-2, cel frq9, cel frq10, and cel wc-2. We find that these double mutant strains are robustly rhythmic when assayed under lipid-deficient conditions, indicating that free-running rhythmicity does not require the frq, wc-1, or wc-2 gene products. The rhythms in the double mutant strains are similar to the cel and chol-1 parents, except that they are less sensitive to light. This suggests that the frq, wc-1, and wc-2 gene products may be components of a pathway that normally supplies input to a core oscillator to transduce light signals and sustain rhythmicity. This pathway can be bypassed when lipid metabolism is altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroplast movement was induced by partial cell illumination using a high-fluence blue microbeam in light-grown and dark-adapted prothallial cells of the fern Adiantum capillus-veneris. Chloroplasts inside the illuminated area moved out (high-fluence response [HFR]), whereas those outside moved toward the irradiated area (low-fluence response [LFR]), although they stopped moving when they reached the border. These results indicate that both HFR and LFR signals are generated by high-fluence blue light of the same area, and that an LFR signal can be transferred long-distance from the beam spot, although an HFR signal cannot. The lifetime of the HFR signal was calculated from the traces of chloroplast movement induced by a brief pulse from a high-fluence blue microbeam to be about 6 min. This is very short compared with that of the LFR (30–40 min; T. Kagawa, M. Wada [1994] J Plant Res 107: 389–398). These data indicate that the signal transduction pathways of the HFR and the LFR must be distinct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that the degree of anisotropic expansion of plant tissues is controlled by the degree of alignment of cortical microtubules or cellulose microfibrils. Previously, for the primary root of maize (Zea mays L.), we quantified spatial profiles of expansion rate in length, radius, and circumference and the degree of growth anisotropy separately for the stele and cortex, as roots became thinner with time from germination or in response to low water potential (B.M. Liang, A.M. Dennings, R.E. Sharp, T.I. Baskin [1997] Plant Physiol 115:101–111). Here, for the same material, we quantified microtubule alignment with indirect immunofluorescence microscopy and microfibril alignment throughout the cell wall with polarized-light microscopy and from the innermost cell wall layer with electron microscopy. Throughout much of the growth zone, mean orientations of microtubules and microfibrils were transverse, consistent with their parallel alignment specifying the direction of maximal expansion rate (i.e. elongation). However, where microtubule alignment became helical, microfibrils often made helices of opposite handedness, showing that parallelism between these elements was not required for helical orientations. Finally, contrary to the hypothesis, the degree of growth anisotropy was not correlated with the degree of alignment of either microtubules or microfibrils. The mechanisms plants use to specify radial and tangential expansion rates remain uncharacterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol particles are ubiquitous in the troposphere and exert an important influence on global climate and the environment. They affect climate through scattering, transmission, and absorption of radiation as well as by acting as nuclei for cloud formation. A significant fraction of the aerosol particle burden consists of minerals, and most of the remainder— whether natural or anthropogenic—consists of materials that can be studied by the same methods as are used for fine-grained minerals. Our emphasis is on the study and character of the individual particles. Sulfate particles are the main cooling agents among aerosols; we found that in the remote oceanic atmosphere a significant fraction is aggregated with soot, a material that can diminish the cooling effect of sulfate. Our results suggest oxidization of SO2 may have occurred on soot surfaces, implying that even in the remote marine troposphere soot provided nuclei for heterogeneous sulfate formation. Sea salt is the dominant aerosol species (by mass) above the oceans. In addition to being important light scatterers and contributors to cloud condensation nuclei, sea-salt particles also provide large surface areas for heterogeneous atmospheric reactions. Minerals comprise the dominant mass fraction of the atmospheric aerosol burden. As all geologists know, they are a highly heterogeneous mixture. However, among atmospheric scientists they are commonly treated as a fairly uniform group, and one whose interaction with radiation is widely assumed to be unpredictable. Given their abundances, large total surface areas, and reactivities, their role in influencing climate will require increased attention as climate models are refined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and anthocyanin in 5-d-old seedlings were measured under each light condition and in the dark. phyA was the major photoreceptor/effector for most far-red-light responses, although phyB and cry1 modulated anthocyanin accumulation in a phyA-dependent manner. phyB was the major photoreceptor in red light, although cry1 acted as a phyA/phyB-dependent modulator of chlorophyll accumulation under these conditions. All three photoreceptors contributed to most blue light deetiolation responses, either redundantly or additively; however, phyB acted as a modulator of cotyledon expansion dependent on the presence of cry1. As reported previously, flowering time in long days was promoted by phyA and inhibited by phyB, with each suppressing the other's effect. In addition to the effector/modulator relationships described above, measurements of hypocotyls from blue-light-grown seedlings demonstrated phytochrome activity in blue light and cry1 activity in a phyAphyB mutant background.