20 resultados para Light in art

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroplast movement was induced by partial cell illumination using a high-fluence blue microbeam in light-grown and dark-adapted prothallial cells of the fern Adiantum capillus-veneris. Chloroplasts inside the illuminated area moved out (high-fluence response [HFR]), whereas those outside moved toward the irradiated area (low-fluence response [LFR]), although they stopped moving when they reached the border. These results indicate that both HFR and LFR signals are generated by high-fluence blue light of the same area, and that an LFR signal can be transferred long-distance from the beam spot, although an HFR signal cannot. The lifetime of the HFR signal was calculated from the traces of chloroplast movement induced by a brief pulse from a high-fluence blue microbeam to be about 6 min. This is very short compared with that of the LFR (30–40 min; T. Kagawa, M. Wada [1994] J Plant Res 107: 389–398). These data indicate that the signal transduction pathways of the HFR and the LFR must be distinct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High fluence-rate blue light (BL) rapidly inhibits hypocotyl growth in Arabidopsis, as in other species, after a lag time of 30 s. This growth inhibition is always preceded by the activation of anion channels. The membrane depolarization that results from the activation of anion channels by BL was only 30% of the wild-type magnitude in hy4, a mutant lacking the HY4 BL receptor. High-resolution measurements of growth made with a computer-linked displacement transducer or digitized images revealed that BL caused a rapid inhibition of growth in wild-type and hy4 seedlings. This inhibition persisted in wild-type seedlings during more than 40 h of continuous BL. By contrast, hy4 escaped from the initial inhibition after approximately 1 h of BL and grew faster than wild type for approximately 30 h. Wild-type seedlings treated with 5-nitro-2-(3-phenylpropylamino)-benzoic acid, a potent blocker of the BL-activated anion channel, displayed rapid growth inhibition, but, similar to hy4, these seedlings escaped from inhibition after approximately 1 h of BL and phenocopied the mutant for at least 2.5 h. The effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid and the HY4 mutation were not additive. Taken together, the results indicate that BL acts through HY4 to activate anion channels at the plasma membrane, causing growth inhibition that begins after approximately 1 h. Neither HY4 nor anion channels appear to participate greatly in the initial phase of inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 μm NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes, but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activity-dependent plasticity is thought to underlie both formation of appropriate synaptic connections during development and reorganization of adult cortical topography. We have recently cloned many candidate plasticity-related genes (CPGs) induced by glutamate-receptor activation in the hippocampus. Screening the CPG pool for genes that may contribute to neocortical plasticity resulted in the identification of six genes that are induced in adult visual cortical areas in response to light. These genes are also naturally induced during postnatal cortical development. CPG induction by visual stimulation occurs primarily in neurons located in cortical layers II-III and VI and persists for at least 48 hr. Four of the visually responsive CPGs (cpg2, cpg15, cpg22, cpg29) are previously unreported genes, one of which (cpg2) predicts a "mini-dystrophin-like" structural protein. These results lend molecular genetic support to physiological and anatomical studies showing activity-dependent structural reorganization in adult cortex. In addition, these results provide candidate genes the function of which may underlie mechanisms of adult cortical reorganization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the role of nucleotide excision repair (NER) in the cellular processing of carcinogenic DNA photoproducts induced by defined, environmentally relevant portions of the solar wavelength spectrum, we have determined the mutagenic specificity of simulated sunlight (310-1100 nm), UVA (350-400 nm), and UVB (290-320 nm), as well as of the "nonsolar" model mutagen 254-nm UVC, at the adenine phosphoribosyltransferase (aprt) locus in NER-deficient (ERCC1) Chinese hamster ovary (CHO) cells. The frequency distributions of mutational classes induced by UVB and by simulated sunlight in repair-deficient CHO cells were virtually identical, each showing a marked increase in tandem CC-->TT transitions relative to NER-proficient cells. A striking increase in CC-->TT events was also previously documented for mutated p53 tumor-suppressor genes from nonmelanoma tumors of NER-deficient, skin cancer-prone xeroderma pigmentosum patients, compared to normal individuals. The data therefore indicate that the aprt gene in NER-deficient cultured rodent cells irradiated with artificial solar light generates the same distinctive "fingerprint" for sunlight mutagenesis as the p53 locus in NER-deficient humans exposed to natural sunlight in vivo. Moreover, in strong contrast to the situation for repair-component CHO cells, where a significant role for UVA was previously noted, the mutagenic specificity of simulated sunlight in NER-deficient CHO cells and of natural sunlight in humans afflicted with xeroderma pigmentosum can be entirely accounted for by the UVB portion of the solar wavelength spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADPH-protochlorophyllide oxidoreductase (POR; EC 1.6.99.1) catalyzes the only known light-dependent step in chlorophyll synthesis of higher plants, the reduction of protochlorophyllide (Pchlide) to chlorophyllide. In barley, two distinct immunoreactive POR proteins were identified. In contrast to the light-sensitive POR enzyme studied thus far (POR-A), levels of the second POR protein remained constant in seedlings during the transition from dark growth to the light and in green plants. The existence of a second POR-related protein was verified by isolating and sequencing cDNAs that encode a second POR polypeptide (POR-B) with an amino acid sequence identity of 75% to the POR-A. In the presence of NADPH and Pchlide, the in vitro-synthesized POR-A and POR-B proteins could be reconstituted to ternary enzymatically active complexes that reduced Pchlide to chlorophyllide only after illumination. Even though the in vitro activities of the two enzymes were similar, the expression of their genes during the light-induced transformation of etiolated to green seedlings was distinct. While the POR-A mRNA rapidly declined during illumination of dark-grown seedlings and soon disappeared, POR-B mRNA remained at an approximately constant level in dark-grown and green seedlings. Thus these results suggest that chlorophyll synthesis is controlled by two light-dependent POR enzymes, one that is active only transiently in etiolated seedlings at the beginning of illumination and the other that also operates in green plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordination between the activities of organelles and the nucleus requires the exchange of signals. Using Chlamydomonas, we provide evidence that plastid-derived chlorophyll precursors may replace light in the induction of two nuclear heat-shock genes (HSP70A and HSP70B) and thus qualify as plastidic signal. Mutants defective in the synthesis of Mg-protoporphyrin IX were no longer inducible by light. Feeding of Mg-protoporphyrin IX or its dimethyl ester to wild-type or mutant cells in the dark resulted in induction. The analysis of HSP70A promoter mutants that do or do not respond to light revealed that these chlorophyll precursors specifically activate the light signaling pathway. Activation of gene expression was not observed when protoporphyrin IX, protochlorophyllide, or chlorophyllide were added. A specific interaction of defined chlorophyll precursors with factor(s) that regulate nuclear gene expression is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl− fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl− occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5–15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pumpkin leaves grown under high light (500-700 micromol of photons m-2.s-1) were illuminated under photon flux densities ranging from 6.5 to 1500 micromol.m-2.s-1 in the presence of lincomycin, an inhibitor of chloroplast protein synthesis. The illumination at all light intensities caused photoinhibition, measured as a decrease in the ratio of variable to maximum fluorescence. Loss of photosystem II (PSII) electron transfer activity correlated with the decrease in the fluorescence ratio. The rate constant of photoinhibition, determined from first-order fits, was directly proportional to photon flux density at all light intensities studied. The fluorescence ratio did not decrease if the leaves were illuminated in low light in the absence of lincomycin or incubated in darkness in the presence of lincomycin. The constancy of the quantum yield of photoinhibition under different photon flux densities strongly suggests that photoinhibition in vivo occurs by one dominant mechanism under all light intensities. This mechanism probably is not the acceptor side mechanism characterized in the anaerobic case in vitro. Furthermore, there was an excellent correlation between the loss of PSII activity and the loss of the D1 protein from thylakoid membranes under low light. At low light, photoinhibition occurs so slowly that inactive PSII centers with the D1 protein waiting to be degraded do not accumulate. The kinetic agreement between D1 protein degradation and the inactivation of PSII indicates that the turnover of the D1 protein depends on photoinhibition under both low and high light.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In cyanobacterial cells, fatty acid desaturation is one of the crucial steps in the acclimation processes to low-temperature conditions. The expression of all the four acyl lipid desaturase genes of Synechocystis PCC 6803 was studied as a function of temperature and separately as a function of light. We used cells grown at 25°C in light-activated heterotrophic growth conditions. In these cells, the production of α-linolenic acid and 18:4 fatty acids was negligible and the synthesis of γ-linolenic acid was remarkably suppressed compared with those of the cells grown photoautotrophically. The cells grown in the light in the presence of glucose showed no difference in fatty acid composition compared with cells grown photoautotrophically. The level of desC mRNA for Δ9 desaturase was not affected by either the temperature or the light. It was constitutively expressed at 25°C with and without illumination. The level of desB transcripts was negligible in the dark-grown cells and was enhanced about 10-fold by exposure of the cells to light. The maximum level of expression occurred within 15 min. The level of desA and desD mRNAs was higher in dark-grown cells than that of desB mRNA for ω3 desaturase. However, the induction of both desA and desD mRNAs for Δ12 and Δ6 desaturases, respectively, was enhanced by light about 10-fold. Rifampicin, chloramphenicol, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea completely blocked the induction of the expression of desA, desB, and desD. Consequently, we suggest the regulatory role of light via photosynthetic processes in the induction of the expression of acyl lipid desaturases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

STAT1 is a cytoplasmic transcription factor that is phosphorylated by Janus kinases (Jak) in response to interferon-γ (IFNγ). Phosphorylated STAT1 translocates to the nucleus, where it turns on specific sets of IFNγ-inducible genes. Here, we show that UV light interferes with tyrosine phosphorylation of STAT1, thereby hindering IFNγ from exerting its biological effects. This effect is not due to a down-regulation of the IFNγ receptor because phosphorylation of upstream-located Jak1 and Jak2 was not suppressed by UV light. In contrast, UV light had no effect on the phosphorylation of STAT3, which is activated by the proinflammatory cytokine interleukin 6. The UV light effect on STAT1 phosphorylation could be antagonized by vanadate, indicating at least partial involvement of a protein tyrosine phosphatase. Therefore, this study indicates a mechanism by which UV light can inhibit gene activation and suggests STAT1 as a new extranuclear UV target closely located to the membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical cross-linking is a potentially useful technique for probing the architecture of multiprotein complexes. However, analyses using typical bifunctional cross-linkers often suffer from poor yields, and large-scale modification of nucleophilic side chains can result in artifactual results attributable to structural destabilization. We report here the de novo design and development of a type of protein cross-linking reaction that uses a photogenerated oxidant to mediate rapid and efficient cross-linking of associated proteins. The process involves brief photolysis of tris-bipyridylruthenium(II) dication with visible light in the presence of the electron acceptor ammonium persulfate and the proteins of interest. Very high yields of cross-linked products can be obtained with irradiation times of <1 second. This chemistry obviates many of the problems associated with standard cross-linking reagents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How evergreen species store and protect chlorophyll during exposure to high light in winter remains unexplained. This study reveals that the evergreen snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) stores and protects its chlorophylls by forming special complexes that are unique to the winter-acclimated state. Our in vivo spectral and kinetic characterizations reveal a prominent component of the chlorophyll fluorescence spectrum around 715 nm at 77 K. This band coincides structurally with a loss of chlorophyll and an increase in energy-dissipating carotenoids. Functionally, the band coincides with an increased capacity to dissipate excess light energy, absorbed by the chlorophylls, as heat without intrathylakoid acidification. The increased heat dissipation helps protect the chlorophylls from photo-oxidative bleaching and thereby facilitates rapid recovery of photosynthesis in spring.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the α- or β-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (α-carotene branch), zeaxanthin, and antheraxanthin (β-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), α-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wild-type Chlamydomonas reinhardtii cells shifted from high concentrations (5%) of CO2 to low, ambient levels (0.03%) rapidly increase transcription of mRNAs from several CO2-responsive genes. Simultaneously, they develop a functional carbon concentrating mechanism that allows the cells to greatly increase internal levels of CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. The cia5 mutant is defective in all of these phenotypes. A newly isolated gene, designated Cia5, restores transformed cia5 cells to the phenotype of wild-type cells. The 6,481-bp gene produces a 5.1-kb mRNA that is present constitutively in light in high and low CO2 both in wild-type cells and the cia5 mutant. It encodes a protein that has features of a putative transcription factor and that, likewise, is present constitutively in low and high CO2 conditions. Complementation of cia5 can be achieved with a truncated Cia5 gene that is missing the coding information for 54 C-terminal amino acids. Unlike wild-type cells or cia5 mutants transformed with an intact Cia5 gene, cia5 mutants complemented with the truncated gene exhibit constitutive synthesis of mRNAs from CO2-responsive genes in light under both high and low CO2 conditions. These discoveries suggest that posttranslational changes to the C-terminal domain control the ability of CIA5 to act as an inducer and directly or indirectly control transcription of CO2-responsive genes. Thus, CIA5 appears to be a master regulator of the carbon concentrating mechanism and is intimately involved in the signal transduction mechanism that senses and allows immediate responses to fluctuations in environmental CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} concentrations.