46 resultados para Ligands and pince complexes
em National Center for Biotechnology Information - NCBI
Resumo:
We report the crystal structures of the copper and nickel complexes of RNase A. The overall topology of these two complexes is similar to that of other RNase A structures. However, there are significant differences in the mode of binding of copper and nickel. There are two copper ions per molecule of the protein, but there is only one nickel ion per molecule of the protein. Significant changes occur in the interprotein interactions as a result of differences in the coordinating groups at the common binding site around His-105. Consequently, the copper- and nickel-ion-bound dimers of RNase A act as nucleation sites for generating different crystal lattices for the two complexes. A second copper ion is present at an active site residue His-119 for which all the ligands are from one molecule of the protein. At this second site, His-119 adopts an inactive conformation (B) induced by the copper. We have identified a novel copper binding motif involving the α-amino group and the N-terminal residues.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
DNA conformational changes are essential for the assembly of multiprotein complexes that contact several DNA sequence elements. An approach based on atomic force microscopy was chosen to visualize specific protein-DNA interactions occurring on eukaryotic class II nuclear gene promoters. Here we report that binding of the transcription regulatory protein Jun to linearized plasmid DNA containing the consensus AP-1 binding site upstream of a class II gene promoter leads to bending of the DNA template. This binding of Jun was found to be essential for the formation of preinitiation complexes (PICs). The cooperative binding of Jun and PIC led to looping of DNA at the protein binding sites. These loops were not seen in the absence of either PICs, Jun, or the AP-1 binding site, suggesting a direct interaction between DNA-bound Jun homodimers and proteins bound to the core promoter. This direct visualization of functional transcriptional complexes confirms the theoretical predictions for the mode of gene regulation by trans-activating proteins.
Resumo:
A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.
Resumo:
The solution structures of calicheamicin gamma 1I, its cycloaromatized analog (calicheamicin epsilon), and its aryl tetrasaccharide complexed to a common DNA hairpin duplex have been determined by NMR and distance-refined molecular dynamics computations. Sequence specificity is associated with carbohydrate-DNA recognition that places the aryl tetrasaccharide component of all three ligands in similar orientations in the minor groove at the d(T-C-C-T).d(A-G-G-A) segment. The complementary fit of the ligands and the DNA minor groove binding site creates numerous van der Waals contacts as well as hydrogen bonding interactions. Notable are the iodine and sulfur atoms of calicheamicin that hydrogen bond with the exposed amino proton of the 5'- and 3'-guanines, respectively, of the d(A-G-G-A) segment. The sequence-specific carbohydrate binding orients the enediyne aglycone of calicheamicin gamma 1I such that its C3 and C6 proradical centers are adjacent to the cleavage sites. While the enediyne aglycone of calicheamicin gamma 1I is tilted relative to the helix axis and spans the minor groove, the cycloaromatized aglycone is aligned approximately parallel to the helix axis in the respective complexes. Specific localized conformational perturbations in the DNA have been identified from imino proton complexation shifts and changes in specific sugar pucker patterns on complex formation. The helical parameters for the carbohydrate binding site are comparable with corresponding values in B-DNA fibers while a widening of the groove is observed at the adjacent aglycone binding site.
Resumo:
Recent data suggest that survival of resting, naïve T cells requires an interaction with self MHC molecules. From analysis of the class I MHC-restricted T cell receptor transgenic strain OT-I, we report a different response. Rather than merely surviving, these T cells proliferated slowly after transfer into T-depleted syngeneic hosts. This expansion required both T cell “space” and expression of normal levels of self class I MHC molecules. Furthermore, we demonstrate that during homeostatic expansion in a suitable environment, naïve phenotype (CD44low) OT-I T cells converted to memory phenotype (CD44med/high), despite the absence of foreign antigenic stimulation. On the other hand, cells undergoing homeostatic expansion did not acquire cytolytic effector function. The significance of these data for reactivity of T cells with self peptide/MHC ligands and the implications for normal and abnormal T cell homeostasis are discussed.
Resumo:
rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin—a major nucleolar RNA-binding protein—contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.
Resumo:
Transcription factor IIH (TFIIH) is a multisubunit protein complex essential for both the initiation of RNA polymerase class II (pol II)-catalyzed transcription and nucleotide excision repair of DNA. Recent studies have shown that TFIIH copurifies with the cyclin-dependent kinase (cdk)-activating kinase complex (CAK) that includes cdk7, cyclin H, and p36/MAT1. Here we report the isolation of two TFIIH-related complexes: TFIIH* and ERCC2/CAK. TFIIH* consists of a subset of the TFIIH complex proteins including ERCC3 (XPB), p62, p44, p41, and p34 but is devoid of detectable levels of ERCC2 (XPD) and CAK. ERCC2/CAK was isolated as a complex that exhibits CAK activity that cosediments with the three CAK components (cdk7, cyclin H, and p36/MAT1) as well as the ERCC2 (XPD) protein. TFIIH* can support pol II-catalyzed transcription in vitro with lower efficiency compared with TFIIH. This TFIIH*-dependent transcription reaction was stimulated by ERCC2/CAK. The ERCC2/CAK and TFIIH* complexes are each active in DNA repair as shown by their ability to complement extracts prepared from ERCC2 (XPD)- and ERCC3 (XPB)-deficient cells, respectively, in supporting the excision of DNA containing a cholesterol lesion. These data suggest that TFIIH* and ERCC2/CAK interact to form the TFIIH holoenzyme capable of efficiently assembling the pol II transcription initiation complex and directly participating in excision repair reactions.
Resumo:
The ALL-1 gene was discovered by virtue of its involvement in human acute leukemia. Its Drosophila homolog trithorax (trx) is a member of the trx-Polycomb gene family, which maintains correct spatial expression of the Antennapedia and bithorax complexes during embryogenesis. The C-terminal SET domain of ALL-1 and TRITHORAX (TRX) is a 150-aa motif, highly conserved during evolution. We performed yeast two hybrid screening of Drosophila cDNA library and detected interaction between a TRX polypeptide spanning SET and the SNR1 protein. SNR1 is a product of snr1, which is classified as a trx group gene. We found parallel interaction in yeast between the SET domain of ALL-1 and the human homolog of SNR1, INI1 (hSNF5). These results were confirmed by in vitro binding studies and by demonstrating coimmunoprecipitation of the proteins from cultured cells and/or transgenic flies. Epitope-tagged SNR1 was detected at discrete sites on larval salivary gland polytene chromosomes, and these sites colocalized with around one-half of TRX binding sites. Because SNR1 and INI1 are constituents of the SWI/SNF complex, which acts to remodel chromatin and consequently to activate transcription, the interactions we observed suggest a mechanism by which the SWI/SNF complex is recruited to ALL-1/trx targets through physical interactions between the C-terminal domains of ALL-1 and TRX and INI1/SNR1.
Resumo:
α-Melanocyte stimulating hormone (α-MSH) analogs, cyclized through site-specific rhenium (Re) and technetium (Tc) metal coordination, were structurally characterized and analyzed for their abilities to bind α-MSH receptors present on melanoma cells and in tumor-bearing mice. Results from receptor-binding assays conducted with B16 F1 murine melanoma cells indicated that receptor-binding affinity was reduced to approximately 1% of its original levels after Re incorporation into the cyclic Cys4,10, d-Phe7–α-MSH4-13 analog. Structural analysis of the Re–peptide complex showed that the disulfide bond of the original peptide was replaced by thiolate–metal–thiolate cyclization. A comparison of the metal-bound and metal-free structures indicated that metal complexation dramatically altered the structure of the receptor-binding core sequence. Redesign of the metal binding site resulted in a second-generation Re–peptide complex (ReCCMSH) that displayed a receptor-binding affinity of 2.9 nM, 25-fold higher than the initial Re–α-MSH analog. Characterization of the second-generation Re–peptide complex indicated that the peptide was still cyclized through Re coordination, but the structure of the receptor-binding sequence was no longer constrained. The corresponding 99mTc- and 188ReCCMSH complexes were synthesized and shown to be stable in phosphate-buffered saline and to challenges from diethylenetriaminepentaacetic acid (DTPA) and free cysteine. In vivo, the 99mTcCCMSH complex exhibited significant tumor uptake and retention and was effective in imaging melanoma in a murine-tumor model system. Cyclization of α-MSH analogs via 99mTc and 188Re yields chemically stable and biologically active molecules with potential melanoma-imaging and therapeutic properties.
Resumo:
Regulators of G protein signaling (RGS) proteins act as GTPase-activating proteins (GAPs) toward the α subunits of heterotrimeric, signal-transducing G proteins. RGS11 contains a G protein γ subunit-like (GGL) domain between its Dishevelled/Egl-10/Pleckstrin and RGS domains. GGL domains are also found in RGS6, RGS7, RGS9, and the Caenorhabditis elegans protein EGL-10. Coexpression of RGS11 with different Gβ subunits reveals specific interaction between RGS11 and Gβ5. The expression of mRNA for RGS11 and Gβ5 in human tissues overlaps. The Gβ5/RGS11 heterodimer acts as a GAP on Gαo, apparently selectively. RGS proteins that contain GGL domains appear to act as GAPs for Gα proteins and form complexes with specific Gβ subunits, adding to the combinatorial complexity of G protein-mediated signaling pathways.
Resumo:
Mammalian Ran-binding protein-1 (RanBP1) and its fission yeast homologue, sbp1p, are cytosolic proteins that interact with the GTP-charged form of Ran GTPase through a conserved Ran-binding domain (RBD). In vitro, this interaction can accelerate the Ran GTPase-activating protein–mediated hydrolysis of GTP on Ran and the turnover of nuclear import and export complexes. To analyze RanBP1 function in vivo, we expressed exogenous RanBP1, sbp1p, and the RBD of each in mammalian cells, in wild-type fission yeast, and in yeast whose endogenous sbp1 gene was disrupted. Mammalian cells and wild-type yeast expressing moderate levels of each protein were viable and displayed normal nuclear protein import. sbp1− yeast were inviable but could be rescued by all four exogenous proteins. Two RBDs of the mammalian nucleoporin RanBP2 also rescued sbp1− yeast. In mammalian cells, wild-type yeast, and rescued mutant yeast, exogenous full-length RanBP1 and sbp1p localized predominantly to the cytosol, whereas exogenous RBDs localized predominantly to the cell nucleus. These results suggest that only the RBD of sbp1p is required for its function in fission yeast, and that this function may not require confinement of the RBD to the cytosol. The results also indicate that the polar amino-terminal portion of sbp1p mediates cytosolic localization of the protein in both yeast and mammalian cells.
Resumo:
The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, QB, within the RC. The binding of Cd2+ or Zn2+ has been previously shown to inhibit the rate of reduction and protonation of QB. We report here on the metal binding site, determined by x-ray diffraction at 2.5-Å resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd2+ and Zn2+ complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from QA− to QB was measured in the Cd2+-soaked crystal and found to be the same as in solution in the presence of Cd2+. In addition to the changes in the kinetics, a structural effect of Cd2+ on Glu-H173 was observed. This residue was well resolved in the x-ray structure—i.e., ordered—with Cd2+ bound to the RC, in contrast to its disordered state in the absence of Cd2+, which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of QB. The position of the Cd2+ and Zn2+ localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to QB⨪ are proposed.
Resumo:
In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.
Resumo:
The circulatory half-life of the glycoprotein hormone lutropin (LH) is precisely regulated by the mannose (Man)/GalNAc-4-SO4 receptor expressed in hepatic endothelial cells. Rapid clearance from the circulation contributes to the episodic rise and fall of LH levels that is essential for maximal stimulation of the G protein-coupled LH receptor. We have defined two molecular forms of the Man/GalNAc-4-SO4 receptor that differ in ligand specificity, cell and tissue expression, and function. The form expressed by hepatic endothelial cells binds GalNAc-4-SO4-bearing ligands and regulates hormone circulatory half-life, whereas the form expressed by macrophages binds Man-bearing ligands and may play a role in innate immunity. We demonstrate that the GalNAc-4-SO4-specific form in hepatic endothelial cells is dimeric whereas the Man-specific form in lung macrophages is monomeric, accounting for the different ligand specificities of the receptor expressed in these tissues. Two cysteine-rich domains, each of which binds a single GalNAc-4-SO4, are required to form stable complexes with LH. The kinetics of LH binding by the GalNAc-4-SO4-specific form of the receptor in conjunction with its rate of internalization from the cell surface make it likely that only two of the four terminal GalNAc-4-SO4 moieties present on native LH are engaged before receptor internalization. As a result, the rate of hormone clearance will remain constant over a wide range of LH concentrations and will not be sensitive to variations in the number of terminal GalNAc-4-SO4 moieties as long as two or more are present on multiple oligosaccharides.