4 resultados para Life history calendar
em National Center for Biotechnology Information - NCBI
Resumo:
The life-history strategies of organisms are sculpted over evolutionary time by the relative prospects of present and future reproductive success. As a consequence, animals of many species show flexible behavioral responses to environmental and social change. Here we show that disruption of the habitat of a colony of African cichlid fish, Haplochromis burtoni (Günther) caused males to switch social status more frequently than animals kept in a stable environment. H. burtoni males can be either reproductively active, guarding a territory, or reproductively inactive (nonterritorial). Although on average 25–50% of the males are territorial in both the stable and unstable environments, during the 20-week study, nearly two-thirds of the animals became territorial for at least 1 week. Moreover, many fish changed social status several times. Surprisingly, the induced changes in social status caused changes in somatic growth. Nonterritorial males and animals ascending in social rank showed an increased growth rate whereas territorial males and animals descending in social rank slowed their growth rate or even shrank. Similar behavioral and physiological changes are caused by social change in animals kept in stable environmental conditions, although at a lower rate. This suggests that differential growth, in interaction with environmental conditions, is a central mechanism underlying the changes in social status. Such reversible phenotypic plasticity in a crucial life-history trait may have evolved to enable animals to shift resources from reproduction to growth or vice versa, depending on present and future reproductive prospects.
Resumo:
European water frog hybrids Rana esculenta (Rana ridibunda × Rana lessonae) reproduce hemiclonally, transmitting only their ridibunda genome to gametes. We compared fitness-related larval life-history traits of natural R. esculenta from Poland with those of the two sympatric parental species and of newly generated F1 hybrids. Compared with either parental species, F1 hybrid offspring had higher survival, higher early growth rates, a more advanced developmental stage by day 49, and earlier metamorphosis, but similar mass at metamorphosis. R. esculenta from natural lineages had trait values intermediate between those of F1 offspring and of the two parental species. The data support earlier observations on natural R. esculenta that had faster larval growth, earlier metamorphosis, and higher resistance to hypoxic conditions compared with either parental species. Observing larval heterosis in F1 hybrids in survival, growth rate, and time to metamorphosis, however, at an even higher degree than in hybrids from natural lineages, demonstrates that heterosis is spontaneous and results from hybridity per se rather than from subsequent interclonal selection; in natural lineages the effects of hybridity and of clonal history are confounded. This is compelling evidence for spontaneous heterosis in hybrid clonals. Results on hemiclonal fish hybrids (Poeciliopsis) showed no spontaneous heterosis; thus, our frog data are not applicable to all hybrid clonals. Our data do show, however, that heterosis is an important potential source for the extensively observed ecological success of hybrid clonals. We suggest that heterosis and interclonal selection together shape fitness of natural R. esculenta lineages.
Resumo:
The life history of Harpegnathos saltator is exceptional among ants because both queens and workers reproduce sexually. Recently mated queens start new colonies alone, but later some of the offspring workers also become inseminated and take over the egg-laying role. This alternation seems associated with the existence of very complex underground nests, which are designed to survive floods. Longevity of ponerine queens is low (a consequence of limited caste dimorphism in this "primitive" subfamily), and upon the death of an H. saltator foundress, the nest represents a substantial investment. The queen's progeny should thus be strongly selected to retain the valuable nests. Unlike the flying queens, the workers copulate with males from their own colonies, and, thus, their offspring are expected to be highly related to the foundress. Colony fission appears not to occur because a daughter fragment would lack an adequate nest for protection. Thus, the annual production of queens in colonies with reproductive workers remains essential for the establishment of new colonies. This contrasts with various other ponerine species in which the queens no longer exist.
Resumo:
A symbiosis-based phylogeny leads to a consistent, useful classification system for all life. "Kingdoms" and "Domains" are replaced by biological names for the most inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis-derived nucleated organisms). The earliest Eukarya, anaerobic mastigotes, hypothetically originated from permanent whole-cell fusion between members of Archaea (e.g., Thermoplasma-like organisms) and of Eubacteria (e.g., Spirochaeta-like organisms). Molecular biology, life-history, and fossil record evidence support the reunification of bacteria as Prokarya while subdividing Eukarya into uniquely defined subtaxa: Protoctista, Animalia, Fungi, and Plantae.