4 resultados para Leydig cell

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Male aging is accompanied by reduced testosterone production by the Leydig cells, the testosterone-producing cells of the testis. The mechanism by which this occurs is unknown. Based on the observations that reactive oxygen is capable of damaging components of the steroidogenic pathway and that reactive oxygen is produced during steroidogenesis itself, we hypothesized that long-term suppression of steroidogenesis might inhibit or prevent age-related deficits in Leydig cell testosterone production. To test this, we administered contraceptive doses of testosterone to groups of young (3 months old) and middle-aged (13 months old) Brown Norway rats via Silastic implants to suppress endogenous Leydig cell testosterone production. After 8 months, the implants were removed, which rapidly (days) restores the ability of the previously suppressed Leydig cells to produce testosterone. Two months after removing the implants, when the rats of the two groups were 13 and 23 months of age, respectively, the Leydig cells in both cases were found to produce testosterone at the high levels of young Leydig cells, whereas significantly lower levels were produced by the 23-month-old controls. Thus, by placing the Leydig cells in a state of steroidogenic “hibernation,” the reductions in Leydig cell testosterone production that invariably accompany aging did not occur. If hormonal contraception in the human functions the same way, the adverse consequences of reduced testosterone in later life (osteoporosis, reduced muscle mass, reduced libido, mood swings, etc.) might be delayed or prevented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS) causes regression of the fetal Müllerian duct on binding a heteromeric complex of types I and II cell-surface receptors in the fetal urogenital ridge. The MIS type II receptor (MISRII), which provides specificity for MIS, is also expressed in the adult testis, ovary, and uterus. The rat MISRII promoter was cloned to study the molecular mechanisms underlying its temporal and cell-specific expression. The 1.6-kilobase (kb) promoter contained no recognizable TATA or CAAT box, but there was a consensus Sp1 site upstream of the transcription initiation site. Two binding sites for the orphan nuclear receptor steroidogenic factor-1 (SF-1) are occupied in vitro by using nuclear extracts from R2C cells, an MIS-responsive rat Leydig cell line that expresses endogenous MISRII, with differing affinities, indicating that the distal SF-1 site is bound more avidly than is the proximal SF-1 site. R2C cells transfected with MISRII promoter/luciferase reporter constructs show a 12-fold induction with the 1.6-kb fragment and deletion of sequences upstream of −282-bp lowered luciferase expression to one-third. Mutation of both SF-1 sites greatly inhibited luciferase expression, whereas mutation of either site alone resulted in continuing activation by endogenous SF-1, indicating redundancy. In vitro binding and transcriptional analyses suggest that a proximal potential Smad-responsive element and an uncharacterized element also contribute to activation of the MISRII gene. R2C cells and MISRII promoter regulation can now be used to uncover endogenous transcription factors responsible for receptor expression or repression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Müllerian Inhibiting Substance (MIS) expression is inversely proportional to the serum concentration of testosterone in males after birth and in vitro studies have shown that MIS can lower testosterone production by Leydig cells. Also, mice overexpressing MIS exhibited Leydig cell hypoplasia and lower levels of serum testosterone, but it is not clear whether this is a result of MIS affecting the development of Leydig cells or their capacity to produce testosterone. To examine the hypothesis that MIS treatment will result in decreased testosterone production by mature Leydig cells in vivo, we treated luteinizing hormone (LH)-stimulated adult male rats and mice with MIS and demonstrated that it can lead to a several-fold reduction in testosterone in serum and in testicular extracts. There was also a slight decrease in 17-OH-progesterone compared to the more significant decrease in testosterone, suggesting that MIS might be regulating the lyase activity of cytochrome P450c17 hydroxylase/lyase (Cyp17), but not its hydroxylase activity. Northern analysis showed that, in both MIS-treated rats and mice, the mRNA for Cyp17, which catalyzes the committed step in androgen synthesis, was down-regulated. In rats, the mRNA for cytochrome P450 side-chain cleavage (P450scc) was also down-regulated by MIS. This was not observed in mice, indicating that there might be species-specific regulation by MIS of the enzymes involved in the testosterone biosynthetic pathway. Our results show that MIS can be used in vivo to lower testosterone production by mature rodent Leydig cells and suggest that MIS-mediated down-regulation of the expression of Cyp17, and perhaps P450scc, contributes to that effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DAX-1 [dosage-sensitive sex reversal, adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1] is an orphan nuclear receptor that represses transcription by steroidogenic factor-1 (SF-1), a factor that regulates expression of multiple steroidogenic enzymes and other genes involved in reproduction. Mutations in the human DAX1 gene (also known as AHC) cause the X-linked syndrome AHC, a disorder that is associated with hypogonadotropic hypogonadism also. Characterization of Dax1-deficient male mice revealed primary testicular defects that included Leydig cell hyperplasia (LCH) and progressive degeneration of the germinal epithelium, leading to infertility. In this study, we investigated the effect of Dax1 disruption on the expression profile of various steroidogenic enzyme genes in Leydig cells isolated from Dax1-deficient male mice. Expression of the aromatase (Cyp19) gene, which encodes the enzyme that converts testosterone to estradiol, was increased significantly in the Leydig cells isolated from mutant mice, whereas the expression of other proteins (e.g., StAR and Cyp11a) was not altered. In in vitro transfection studies, DAX-1 repressed the SF-1-mediated transactivation of the Cyp19 promoter but did not inhibit the StAR or Cyp11a promoters. Elevated Cyp19 expression was accompanied by increased intratesticular levels of estradiol. Administration of tamoxifen, a selective estrogen-receptor modulator, restored fertility to the Dax1-deficient male mice and partially corrected LCH, suggesting that estrogen excess contributes to LCH and infertility. Based on these in vivo and in vitro analyses, aromatase seems to be a physiologic target of Dax-1 in Leydig cells, and increased Cyp19 expression may account, in part, for the infertility and LCH in Dax1-deficient mice.