3 resultados para Leukoencephalopathy

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although polyomavirus JC (JCV) is the proven pathogen of progressive multifocal leukoencephalopathy, the fatal demyelinating disease, this virus is ubiquitous as a usually harmless symbiote among human beings. JCV propagates in the adult kidney and excretes its progeny in urine, from which JCV DNA can readily be recovered. The main mode of transmission of JCV is from parents to children through long cohabitation. In this study, we collected a substantial number of urine samples from native inhabitants of 34 countries in Europe, Africa, and Asia. A 610-bp segment of JCV DNA was amplified from each urine sample, and its DNA sequence was determined. A worldwide phylogenetic tree subsequently constructed revealed the presence of nine subtypes including minor ones. Five subtypes (EU, Af2, B1, SC, and CY) occupied rather large territories that overlapped with each other at their boundaries. The entire Europe, northern Africa, and western Asia were the domain of EU, whereas the domain of Af2 included nearly all of Africa and southwestern Asia all the way to the northeastern edge of India. Partially overlapping domains in Asia were occupied by subtypes B1, SC, and CY. Of particular interest was the recovery of JCV subtypes in a pocket or pockets that were separated by great geographic distances from the main domains of those subtypes. Certain of these pockets can readily be explained by recent migrations of human populations carrying these subtypes. Overall, it appears that JCV genotyping promises to reveal previously unknown human migration routes: ancient as well as recent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human polyomavirus JC (JCV) causes the central nervous system demyelinating disease progressive multifocal leukoencephalopathy. Previously, we showed that 40% of Caucasians in the United States excrete JCV in the urine as detected by PCR. We have now studied 68 Navaho from New Mexico, 25 Flathead from Montana, and 29 Chamorro from Guam. By using PCR amplification of a fragment of the VP1 gene, JCV DNA was detected in the urine of 45 (66%) Navaho, 14 (56%) Flathead, and 20 (69%) Chamorro. Genotyping of viral DNAs in these cohorts by cycle sequencing showed predominantly type 2 (Asian), rather than type 1 (European). Type 1 is the major type in the United States and Hungary. Type 2 can be further subdivided into 2A, 2B, and 2C. Type 2A is found in China and Japan. Type 2B is a subtype related to the East Asian type, and is now found in Europe and the United States. The large majority (56–89%) of strains excreted by Native Americans and Pacific Islanders were the type 2A subtype, consistent with the origin of these strains in Asia. These findings indicate that JCV infection of Native Americans predates contact with Europeans, and likely predates migration of Amerind ancestors across the Bering land bridge around 12,000–30,000 years ago. If JCV had already differentiated into stable modern genotypes and subtypes prior to first settlement, the origin of JCV in humans may date from 50,000 to 100,000 years ago or more. We conclude that JCV may have coevolved with the human species, and that it provides a convenient marker for human migrations in both prehistoric and modern times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe molecular and clinical findings in an immunocompetent patient with an oligoastrocytoma and the concomitant presence of the human papovavirus, JC virus (JCV), which is the etiologic agent of the subacute, debilitating demyelinating disease, progressive multifocal leukoencephalopathy. Histologic review revealed a glial neoplasm consisting primarily of a moderately cellular oligodendroglioma with distinct areas of a fibrillary astrocytoma. Immunohistochemical analysis revealed nuclear staining of tumor cells with antibodies against the viral oncoprotein [tumor antigen (T antigen)], the proliferation marker (Ki67), and the cellular proliferation regulator (p53). Using primers specific to the JCV control region, PCR yielded amplified DNA that was identical to the control region of the Mad-4 strain of the virus. PCR analysis demonstrated the presence of the genome for the viral oncoprotein, T antigen, and results from primer extension studies revealed synthesis of the viral early RNA for T antigen in the tumor tissues. The presence of viral T antigen in the tumor tissue was further demonstrated by immunoblot assay. To our knowledge, this is the first report of the presence of JCV DNA, RNA, and T antigen in tissue in which viral T antigen is localized to tumor cell nuclei and suggests the possible association of JCV with some glial neoplasms.