6 resultados para Layer-by-layer technique
em National Center for Biotechnology Information - NCBI
Resumo:
We have studied the kinetics of transcriptional initiation and activation at the malT and malTp1 promoters of Escherichia coli using UV laser footprinting. Contrary to previous studies and because of the very rapid signal acquisition by this technique, we can obtain structural information about true reaction intermediates of transcription initiation. The consequences of adding a transcriptional activator, the cAMP receptor protein/cAMP complex (CRP), are monitored in real time, permitting us to assign specific interactions to the activation of discrete steps in transcription initiation. Direct protein–protein contacts between CRP and the RNA polymerase appeared very rapidly, followed by DNA melting around the −10 hexamer. CRP slightly increased the rate of this isomerization reaction but, more importantly, favored the establishment of additional contacts between the DNA upstream of the CRP binding site and RNA polymerase subsequent to open complex formation. These contacts make a major contribution to transcriptional activation by stabilizing open forms of the promoter complex, thereby indirectly accelerating promoter escape. The ensemble of the kinetic, structural signals demonstrated directly that CRP exerts most of its activating effects on the late stages of transcriptional initiation at the malT promoter.
Resumo:
When NMR hydrogen exchange was used previously to monitor the kinetics of RNase A unfolding, some peptide NH protons were found to show EX2 exchange (detected by base catalysis) in addition to the expected EX1 exchange, whose rate is limited by the kinetic unfolding process. In earlier work, two groups showed independently that a restricted two-process model successfully fits published hydrogen exchange rates of native RNase A in the range 0-0.7 M guanidinium chloride. We find that this model predicts properties that are very different from the observed properties of the EX2 exchange reactions of RNase A in conditions where guanidine-induced unfolding takes place. The model predicts that EX2 exchange should be too fast to measure by the technique used, whereas it is readily measurable. Possible explanations for the contradiction are considered here, and we show that removing the restriction from the earlier two-process model is sufficient to resolve the contradiction; instead of specifying that exchange caused by global unfolding occurs by the EX2 mechanism, we allow it to occur by the general mechanism, which includes both the EX1 and EX2 cases. It is logical to remove this restriction because global unfolding of RNase A is known to give rise to EX1 exchange in these unfolding conditions. Resolving the contradiction makes it possible to determine whether populated unfolding intermediates contribute to the EX2 exchange, and this question is considered elsewhere. The results and simulations indicate that moderate or high denaturant concentrations readily give rise to EX1 exchange in native proteins. Earlier studies showed that hydrogen exchange in native proteins typically occurs by the EX2 mechanism but that high temperatures or pH values above 7 may give rise to EX1 exchange. High denaturant concentrations should be added to the list of variables likely to cause EX1 exchange.
Resumo:
A simple evolutionary process can discover sophisticated methods for emergent information processing in decentralized spatially extended systems. The mechanisms underlying the resulting emergent computation are explicated by a technique for analyzing particle-based logic embedded in pattern-forming systems. Understanding how globally coordinated computation can emerge in evolution is relevant both for the scientific understanding of natural information processing and for engineering new forms of parallel computing systems.
Resumo:
Correlations in low-frequency atomic displacements predicted by molecular dynamics simulations on the order of 1 ns are undersampled for the time scales currently accessible by the technique. This is shown with three different representations of the fluctuations in a macromolecule: the reciprocal space of crystallography using diffuse x-ray scattering data, real three-dimensional Cartesian space using covariance matrices of the atomic displacements, and the 3N-dimensional configuration space of the protein using dimensionally reduced projections to visualize the extent to which phase space is sampled.
Resumo:
The predominant localization of the major auxin-binding protein (ABP1) of maize is within the lumen of the endoplasmic reticulum. Nevertheless, all the electrophysiological evidence supporting a receptor role for ABP1 implies that a functionally important fraction of the protein must reside at the outer face of the plasma membrane. Using methods of protoplast preparation designed to minimize proteolysis, we report the detection of ABP at the surface of maize coleoptile protoplasts by the technique of silver-enhanced immunogold viewed by epipolarization microscopy. We also show that ABP clusters following auxin treatment and that this response is temperature-dependent and auxin-specific.
Resumo:
The hot tritium bombardment technique [Goldanskii, V. I., Kashirin, I. A., Shishkov, A. V., Baratova, L. A. & Grebenshchikov, N. I. (1988) J. Mol. Biol. 201, 567–574] has been applied to measure the exposure of proteins on the ribosomal surface. The technique is based on replacement of hydrogen by high energy tritium atoms in thin surface layer of macromolecules. Quantitation of tritium radioactivity of each protein has revealed that proteins S1, S4, S5, S7, S18, S20, and S21 of the small subunit, and proteins L7/L12, L9, L10, L11, L16, L17, L24, and L27 of the large subunit are well exposed on the surface of the Escherichia coli 70 S ribosome. Proteins S8, S10, S12, S16, S17, L14, L20, L29, L30, L31, L32, L33, and L34 have virtually no groups exposed on the ribosomal surface. The remaining proteins are found to be exposed to lesser degree than the well exposed ones. No additional ribosomal proteins was exposed upon dissociation of ribosomes into subunits, thus indicating the absence of proteins on intersubunit contacting surfaces.