21 resultados para Latent class model

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding of invariant chain to major histocompatibility complex (MHC) proteins is an important step in processing of MHC class II proteins and in antigen presentation. The question of how invariant chain can bind to all MHC class II proteins is central to understanding these processes. We have employed molecular modeling to predict the structure of class II-associated invariant chain peptide (CLIP)-MHC protein complexes and to ask whether the predicted mode of association could be general across all MHC class II proteins. CLIP fits identically into the MHC class II alleles HLA-DR3, I-Ak, I-Au, and I-Ad, with a consistent pattern of hydrogen bonds, contacts, and hydrophobic burial and without bad contacts. Our model predicts the burial of CLIP residues Met-91 and Met-99 in the deep P1 and P9 anchor pockets and other detailed interactions, which we have compared with available data. The predicted pattern of I-A allele-specific effects on CLIP binding is very similar to that observed experimentally by alanine-scanning mutations of CLIP. Together, these results indicate that CLIP may bind in a single, general way across products of MHC class II alleles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Psychological stress is thought to contribute to reactivation of latent herpes simplex virus (HSV). Although several animal models have been developed in an effort to reproduce different pathogenic aspects of HSV keratitis or labialis, until now, no good animal model existed in which application of a psychological laboratory stressor results in reliable reactivation of the virus. Reported herein, disruption of the social hierarchy within colonies of mice increased aggression among cohorts, activated the hypothalamic-pituitary-adrenal axis, and caused reactivation of latent HSV type 1 in greater than 40% of latently infected animals. However, activation of the hypothalamic-pituitary-adrenal axis using restraint stress did not activate the latent virus. Thus, the use of social stress in mice provides a good model in which to investigate the neuroendocrine mechanisms that underlie behaviorally mediated reactivation of latent herpesviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mouse p53 protein generated by alternative splicing (p53as) has amino acid substitutions at its C terminus that result in constitutively active sequence-specific DNA binding (active form), whereas p53 protein itself binds inefficiently (latent form) unless activated by C-terminal modification. Exogenous p53as expression activated transcription of reporter plasmids containing p53 binding sequences and inhibited growth of mouse and human cells lacking functional endogenous p53. Inducible p53as in stably transfected p53 null fibroblasts increased p21WAF1/Cip-1/Sdi and decreased bcl-2 protein steady-state levels. Endogenous p53as and p53 proteins differed in response to cellular DNA damage. p53 protein was induced transiently in normal keratinocytes and fibroblasts whereas p53as protein accumulation was sustained in parallel with induction of p21WAF1/Cip-1/Sdi protein and mRNA, in support of p53as transcriptional activity. Endogenous p53 and p53as proteins in epidermal tumor cells responded to DNA damage with different kinetics of nuclear accumulation and efficiencies of binding to a p53 consensus DNA sequence. A model is proposed in which C-terminally distinct p53 protein forms specialize in functions, with latent p53 forms primarily for rapid non-sequence-specific binding to sites of DNA damage and active p53 forms for sustained regulation of transcription and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A coarse-grained model for protein-folding dynamics is introduced based on a discretized representation of torsional modes. The model, based on the Ramachandran map of the local torsional potential surface and the class (hydrophobic/polar/neutral) of each residue, recognizes patterns of both torsional conformations and hydrophobic-polar contacts, with tolerance for imperfect patterns. It incorporates empirical rates for formation of secondary and tertiary structure. The method yields a topological representation of the evolving local torsional configuration of the folding protein, modulo the basins of the Ramachandran map. The folding process is modeled as a sequence of transitions from one contact pattern to another, as the torsional patterns evolve. We test the model by applying it to the folding process of bovine pancreatic trypsin inhibitor, obtaining a kinetic description of the transitions between the contact patterns visited by the protein along the dominant folding pathway. The kinetics and detailed balance make it possible to invert the result to obtain a coarse topographic description of the potential energy surface along the dominant folding pathway, in effect to go backward or forward between a topological representation of the chain conformation and a topographical description of the potential energy surface governing the folding process. As a result, the strong structure-seeking character of bovine pancreatic trypsin inhibitor and the principal features of its folding pathway are reproduced in a reasonably quantitative way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactivation of latent herpesviruses is a particular problem in immunocompromised individuals, such as AIDS patients, who lack effective CD4 T helper cell function. An important question is whether residual immune defenses can be mobilized to combat such opportunistic infections, in the absence of CD4 T cells. In the present study, we used a mouse model of opportunistic infection to determine whether stimulation via CD40 could substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Treatment with an agonistic antibody to CD40 was highly effective in preventing reactivation of latent murine gammaherpesvirus (MHV-68) in the lungs of CD4 T cell-deficient mice. CD8+ T cells were essential for this effect, whereas virus-specific serum antibody was undetectable and IFN-γ production was unchanged. This demonstration that immunostimulation via CD40 can replace CD4 T cell help in controlling latent virus in vivo has potential implications for the development of novel therapeutic agents to prevent viral reactivation in immunocompromised patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friend virus infection of adult immunocompetent mice is a well established model for studying genetic resistance to infection by an immunosuppressive retrovirus. This paper reviews both the genetics of immune resistance and the types of immune responses required for recovery from infection. Specific major histocompatibility complex (MHC) class I and II alleles are necessary for recovery, as is a non-MHC gene, Rfv-3, which controls virus-specific antibody responses. In concordance with these genetic requirements are immunological requirements for cytotoxic T lymphocyte, T helper, and antibody responses, each of which provides essential nonoverlapping functions. The complexity of responses necessary for recovery from Friend virus infection has implications for both immunotherapies and vaccines. For example, it is shown that successful passive antibody therapy is dependent on MHC type because of the requirement for T cell responses. For vaccines, successful immunization requires priming of both T cell and B cell responses. In vivo depletion experiments demonstrate different requirements for CD8+ T cells depending on the vaccine used. The implications of these studies for human retroviral diseases are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have evaluated two synthetic epothilone analogues lacking the 12,13-epoxide functionality, 12,13-desoxyepothilone B (dEpoB), and 12,13-desoxyepothilone F (dEpoF). The concentrations required for 50% growth inhibition (IC50) for a variety of anticancer agents were measured in CCRF-CEM/VBL1000 cells (2,048-fold resistance to vinblastine). By using dEpoB, dEpoF, aza-EpoB, and paclitaxel, the IC50 values were 0.029, 0.092, 2.99, and 5.17 μM, respectively. These values represent 4-, 33.5-, 1,423- and 3,133-fold resistance, respectively, when compared with the corresponding IC50 in the parent [nonmultiple drug-resistant (MDR)] CCRF-CEM cells. We then produced MDR human lung carcinoma A549 cells by continuous exposure of the tumor cells to sublethal concentrations of dEpoB (1.8 yr), vinblastine (1.2 yr), and paclitaxel (1.8 yr). This continued exposure led to the development of 2.1-, 4,848-, and 2,553-fold resistance to each drug, respectively. The therapeutic effect of dEpoB and paclitaxel was also compared in vivo in a mouse model by using various tumor xenografts. dEpoB is much more effective in reducing tumor sizes in all MDR tumors tested. Analysis of dEpoF, an analog possessing greater aqueous solubility than dEpoB, showed curative effects similar to dEpoB against K562, CCRF-CEM, and MX-1 xenografts. These results indicate that dEpoB and dEpoF are efficacious antitumor agents with both a broad chemotherapeutic spectrum and wide safety margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following infection with cytomegalovirus, human granulocyte-macrophage progenitors carry the viral genome but fail to support productive replication. Viral transcripts arise from a region encompassing the major regulatory gene locus; however, their structure differs significantly from productive phase transcripts. One class, sense transcripts, is encoded in the same direction as productive phase transcripts but uses two novel start sites in the ie1/ie2 promoter/enhancer region. These transcripts have the potential to encode a novel 94 aa protein. The other class, antisense transcript, is unspliced and complimentary to ie1 exons 2-4, and has the potential to encode novel 154 and 152 aa proteins. Consistent with a role in latency, these transcripts are present in bone marrow aspirates from naturally infected, healthy seropositive donors but are not present in seronegative controls. Sense latent transcripts are present in a majority of seropositive individuals. Consistent with the expression of latent transcripts, antibody to the 94 aa and 152 aa proteins is detectable in the serum of seropositive individuals. Thus, latent infection by cytomegalovirus is accompanied by the presence of latency-associated transcripts and expression of immunogenic proteins. Overall, these results suggest that bone marrow-derived myeloid progenitors are an important natural site of viral latency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine specificity of two Ha255-262-specific, Kk-restricted T cells, and of a unique antibody, pSAN, specific for the same peptide-MHC complex. Independently, a model of the Ha255-262-Kk complex was generated through homology modeling and molecular mechanics refinement. The functional data and the model corroborated each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We created a "knockout" embryonic stem cell via targeted disruption of the phosphatidylinositol glycan class A (Pig-a) gene, resulting in loss of expression of cell surface glycosyl phosphatidylinositol-anchored proteins and reproducing the mutant phenotype of the human disease paroxysmal nocturnal hemoglobinuria. Morphogenesis of Pig-a- embryoid bodies (EB) in vitro was grossly aberrant and, unlike EB derived from normal embryonic stem cells, Pig-A EB produced no secondary hematopoietic colonies. Chimeric EB composed of control plus Pig-A- cells, however, appeared normal, and hematopoiesis from knock-out cells was reconstituted. Transfer in situ of glycosyl phosphatidylinositol-anchored proteins from normal to knock-out cells was demonstrated by two-color fluorescent analysis, suggesting a possible mechanism for these functional effects. Hematopoietic cells with mutated PIG-A genes in humans with paroxysmal nocturnal hemoglobinuria may be subject to comparable pathophysiologic processes and amenable to similar therapeutic protein transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graft-versus-host disease (GVHD) is a T-cell-mediated disease of transplanted donor T cells recognizing host alloantigens. Data presented in this report show, to our knowledge, for the first time that a synthetic copolymer of the amino acids L-Glu, L-Lys, L-Ala, and L-Tyr (molecular ratio, 1.9:6.0:4.7:1.0; Mr, 6000-8500) [corrected], termed GLAT, with promiscuous binding to multiple major histocompatibility complex class II alleles is capable of preventing lethal GVHD in the B10.D2 --> BALB/c model (both H-2d) across minor histocompatibility barriers. Administration of GLAT over a limited time after transplant significantly reduced the incidence, onset, and severity of disease. GLAT also improved long-term survival from lethal GVHD: 14/25 (56%) of experimental mice survived > 140 days after transplant compared to 2/26 of saline-treated or to 1/10 of hen egg lysozyme-treated control mice (P < 0.01). Long-term survivors were documented to be fully chimeric by PCR analysis of a polymorphic microsatellite region in the interleukin 1beta gene. In vitro, GLAT inhibited the mixed lymphocyte culture in a dose-dependent fashion across a variety of major barriers tested. Furthermore, GLAT inhibited the response of nylon wool-enriched T cells to syngeneic antigen-presenting cells presenting minor histocompatibility antigens. Prepulsing of the antigen-presenting cells with GLAT reduced the proliferative response, suggesting that GLAT inhibits antigen presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aspartate receptor of bacterial chemotaxis is representative of a large class of membrane-spanning receptors found in prokaryotic and eukaryotic organisms. These receptors, which regulate histidine kinase pathways and possess two putative transmembrane helices per subunit, appear to control a wide variety of cellular processes. The best characterized subgroup of the two-helix receptor class is the homologous family of chemosensory receptors from Escherichia coli and Salmonella typhimurium, including the aspartate receptor. This receptor binds aspartate, an attractant, in the periplasmic compartment and undergoes an intramolecular, transmembrane conformational change, thereby modulating the autophosphorylation rate of a bound histidine kinase in the cytoplasm. Here, we analyze recent results from x-ray crystallographic, solution 19F NMR, and engineered disulfide studies probing the aspartate-induced structural change within the periplasmic and transmembrane regions of the receptor. Together, these approaches provide evidence that aspartate binding triggers a "swinging-piston" displacement of the second membrane-spanning helix, which is proposed to communicate the signal across the bilayer.