4 resultados para Large Amplitude Motions

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of molecular structures at or near their equilibrium configurations have long provided information on their geometry in terms of bond distances and angles. Far-from-equilibrium structures are relatively unknown—especially for complex systems—and generally, neither their dynamics nor their average geometries can be extrapolated from equilibrium values. For such nonequilibrium structures, vibrational amplitudes and bond distances play a central role in phenomena such as energy redistribution and chemical reactivity. Ultrafast electron diffraction, which was developed to study transient molecular structures, provides a direct method for probing the nature of complex molecules far from equilibrium. Here we present our ultrafast electron diffraction observations of transient structures for two cyclic hydrocarbons. At high internal energies of ≈4 eV, these molecules display markedly different behavior. For 1,3,5-cycloheptatriene, excitation results in the formation of hot ground-state structures with bond distances similar to those of the initial structure, but with nearly three times the average vibrational amplitude. Energy is redistributed within 5 ps, but with a negative temperature characterizing the nonequilibrium population. In contrast, the ring-opening reaction of 1,3-cyclohexadiene is shown to result in hot structures with a C—C bond distance of over 1.7 Å, which is 0.2 Å away from any expected equilibrium value. Even up to 400 ps, energy remains trapped in large-amplitude motions comprised of torsion and asymmetric stretching. These studies promise a new direction for studying structural dynamics in nonequilibrium complex systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neuronal nicotinic synapse in tissue slices of the adrenal medulla was studied with whole-cell patch-clamp. Excitatory postsynaptic currents (EPSCs) were evoked by local field stimulation or occurred spontaneously especially when external [K+] was increased. EPSCs were carried by channels sharing biophysical and pharmacological properties of neuronal-type nicotinic receptors (nAChRs). A single-channel conductance (gamma) of 43-45 pS was found from nonstationary variance analysis of EPSCs. Spontaneous EPSCs were tetrodotoxin-insensitive and Ca(2+)-dependent and occurred in burst-like clusters. Quantal analysis of spontaneous EPSCs gave a quantal size of 20 pA and amplitude histograms were well described by binomial models with low values of quantal content, consistent with a small number of spontaneously active release sites. However, rare large amplitude EPSCs suggest that the total number of sites is higher and that extrajunctional receptors are involved. Our estimates of quantal content and size at the chromaffin cell neuronal nicotinic synapse may be useful in characterizing central neuronal-type nicotinic receptor-mediated cholinergic synaptic transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast transverse relaxation of 1H, 15N, and 13C by dipole-dipole coupling (DD) and chemical shift anisotropy (CSA) modulated by rotational molecular motions has a dominant impact on the size limit for biomacromolecular structures that can be studied by NMR spectroscopy in solution. Transverse relaxation-optimized spectroscopy (TROSY) is an approach for suppression of transverse relaxation in multidimensional NMR experiments, which is based on constructive use of interference between DD coupling and CSA. For example, a TROSY-type two-dimensional 1H,15N-correlation experiment with a uniformly 15N-labeled protein in a DNA complex of molecular mass 17 kDa at a 1H frequency of 750 MHz showed that 15N relaxation during 15N chemical shift evolution and 1HN relaxation during signal acquisition both are significantly reduced by mutual compensation of the DD and CSA interactions. The reduction of the linewidths when compared with a conventional two-dimensional 1H,15N-correlation experiment was 60% and 40%, respectively, and the residual linewidths were 5 Hz for 15N and 15 Hz for 1HN at 4°C. Because the ratio of the DD and CSA relaxation rates is nearly independent of the molecular size, a similar percentagewise reduction of the overall transverse relaxation rates is expected for larger proteins. For a 15N-labeled protein of 150 kDa at 750 MHz and 20°C one predicts residual linewidths of 10 Hz for 15N and 45 Hz for 1HN, and for the corresponding uniformly 15N,2H-labeled protein the residual linewidths are predicted to be smaller than 5 Hz and 15 Hz, respectively. The TROSY principle should benefit a variety of multidimensional solution NMR experiments, especially with future use of yet somewhat higher polarizing magnetic fields than are presently available, and thus largely eliminate one of the key factors that limit work with larger molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a framework to describe the cooperative orientational motions of water molecules in liquid water and around solute molecules in water solutions. From molecular dynamics (MD) simulation a new quantity “site-dipole field” is defined as the averaged orientation of water molecules that pass through each spatial position. In the site-dipole field of bulk water we found large vortex-like structures of more than 10 Å in size. Such coherent patterns persist more than 300 ps although the orientational memory of individual molecules is quickly lost. A 1-ns MD simulation of systems consisting of two amino acids shows that the fluctuations of site-dipole field of solvent are pinned around the amino acids, resulting in a stable dipole-bridge between side-chains of amino acids. The dipole-bridge is significantly formed even for the side-chain separation of 14 Å, which corresponds to five layers of water. The way that dipole-bridge forms sensitively depends on the side-chain orientations and thereby explains the specificity in the solvent-mediated interactions between biomolecules.