2 resultados para LOW-RESOURCE SETTINGS
em National Center for Biotechnology Information - NCBI
Resumo:
Many primates, including humans, live in complex hierarchical societies where social context and status affect daily life. Nevertheless, primate learning studies typically test single animals in limited laboratory settings where the important effects of social interactions and relationships cannot be studied. To investigate the impact of sociality on associative learning, we compared the individual performances of group-tested rhesus monkeys (Macaca mulatta) across various social contexts. We used a traditional discrimination paradigm that measures an animal’s ability to form associations between cues and the obtaining of food in choice situations; but we adapted the task for group testing. After training a 55-member colony to separate on command into two subgroups, composed of either high- or low-status families, we exposed animals to two color discrimination problems, one with all monkeys present (combined condition), the other in their “dominant” and “subordinate” cohorts (split condition). Next, we manipulated learning history by testing animals on the same problems, but with the social contexts reversed. Monkeys from dominant families excelled in all conditions, but subordinates performed well in the split condition only, regardless of learning history. Subordinate animals had learned the associations, but expressed their knowledge only when segregated from higher-ranking animals. Because aggressive behavior was rare, performance deficits probably reflected voluntary inhibition. This experimental evidence of rank-related, social modulation of performance calls for greater consideration of social factors when assessing learning and may also have relevance for the evaluation of human scholastic achievement.
Resumo:
The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.