5 resultados para LIPID-CONTENT
em National Center for Biotechnology Information - NCBI
Resumo:
Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development.
Resumo:
The gene product of the recently cloned mouse obese gene (ob) is important in regulating adipose tissue mass. ob RNA is expressed specifically by mouse adipocytes in vivo in each of several different fat cell depots, including brown fat. ob RNA is also expressed in cultured 3T3-442A preadipocyte cells that have been induced to differentiate. Mice with lesions of the hypothalamus, as well as mice mutant at the db locus, express a 20-fold higher level of ob RNA in adipose tissue. These data suggest that both the db gene and the hypothalamus are downstream of the ob gene in the pathway that regulates adipose tissue mass and are consistent with previous experiments suggesting that the db locus encodes the ob receptor. In db/db and lesioned mice, quantitative differences in expression level of ob RNA correlated with adipocyte lipid content. The molecules that regulate expression level of the ob gene in adipocytes probably are important in determining body weight, as are the molecules that mediate the effects of ob at its site of action.
Resumo:
ADP ribosylation factor (ARF) is a small guanosine triphosphate (GTP)-binding protein that regulates the binding of coat proteins to membranes and is required for several stages of vesicular transport. ARF also stimulates phospholipase D (PLD) activity, which can alter the lipid content of membranes by conversion of phospholipids into phosphatidic acid. Abundant PLD activity was found in Golgi-enriched membranes from several cell lines. Golgi PLD activity was greatly stimulated by ARF and GTP analogs and this stimulation could be inhibited by brefeldin A (BFA), a drug that blocks binding of ARF to Golgi membranes. Furthermore, in Golgi membranes from BFA-resistant PtK1 cells, basal PLD activity was high and not stimulated by exogenous ARF or GTP analogs. Thus, ARF activates PLD on the Golgi complex, suggesting a possible link between transport events and the underlying architecture of the lipid bilayer.
Resumo:
Membrane bilayer fusion has been shown to be mediated by v- and t-SNAREs initially present in separate populations of liposomes and to occur with high efficiency at a physiologically meaningful rate. Lipid mixing was demonstrated to involve both the inner and the outer leaflets of the membrane bilayer. Here, we use a fusion assay that relies on duplex formation of oligonucleotides introduced in separate liposome populations and report that SNARE proteins suffice to mediate complete membrane fusion accompanied by mixing of luminal content. We also find that SNARE-mediated membrane fusion does not compromise the integrity of liposomes.
The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli
Resumo:
The structure of lactose permease from Escherichia coli in its lipid environment was studied by attenuated total reflection Fourier transform infrared spectroscopy. The protein exhibits an α-helical content of about 65% and about 25% β-sheet. Unusually fast hydrogen/deuterium (H/D) exchange to 90–95% completion suggests a structure that is highly accessible to the aqueous phase. An average tilt angle of 33° for the helices was found with respect to the bilayer normal at a lipid-to-protein ratio of ≈800:1 (mol/mol), and the permease exhibits optimal activity under these conditions. However, upon decreasing the lipid-to-protein ratio, activity decreases continuously in a manner that correlates with the decrease in the lipid order parameter and the increase in the average helical tilt angle. Taken together, the data indicate that the structure and function of the permease are strongly dependent on the order and integrity of the lipid bilayer.