24 resultados para LENGTH-DEPENDENT TERMINATION
em National Center for Biotechnology Information - NCBI
Resumo:
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine (polyQ) expansions in the huntingtin (Ht) protein. A hallmark of HD is the proteolytic production of an N-terminal fragment of Ht, containing the polyQ repeat, that forms aggregates in the nucleus and cytoplasm of affected neurons. Proteins with longer polyQ repeats aggregate more rapidly and cause disease at an earlier age, but the mechanism of aggregation and its relationship to disease remain unclear. To provide a new, genetically tractable model system for the study of Ht, we engineered yeast cells to express an N-terminal fragment of Ht with different polyQ repeat lengths of 25, 47, 72, or 103 residues, fused to green fluorescent protein. The extent of aggregation varied with the length of the polyQ repeat: at the two extremes, most HtQ103 protein coalesced into a single large cytoplasmic aggregate, whereas HtQ25 exhibited no sign of aggregation. Mutations that inhibit the ubiquitin/proteasome pathway at three different steps had no effect on the aggregation of Ht fragments in yeast, suggesting that the ubiquitination of Ht previously noted in mammalian cells may not inherently be required for polyQ length-dependent aggregation. Changing the expression levels of a wide variety of chaperone proteins in yeast neither increased nor decreased Ht aggregation. However, Sis1, Hsp70, and Hsp104 overexpression modulated aggregation of HtQ72 and HtQ103 fragments. More dramatically, the deletion of Hsp104 virtually eliminated it. These observations establish yeast as a system for studying the causes and consequences of polyQ-dependent Ht aggregation.
Resumo:
Our understanding of the mammalian cell cycle is due in large part to the analysis of cyclin-dependent kinase (CDK) 2 and CDK4/6. These kinases are regulated by E and D type cyclins, respectively, and coordinate the G1/S-phase transition. In contrast, little is known about CDK3, a homolog of CDK2 and cell division cycle kinase 2 (CDC2). Previous studies using ectopic expression of human CDK3 suggest a role for this kinase in the G1/S-phase transition, but analysis of the endogenous kinase has been stymied by the low levels of protein present in cells and by the absence of an identifiable cyclin partner. Herein we report the presence of a single point mutation in the CDK3 gene from several Mus musculus strains commonly used in the laboratory. This mutation results in the replacement of a conserved tryptophan (Trp-187) within kinase consensus domain IX with a stop codon. The protein predicted to be encoded by this allele is truncated near the T loop, which is involved in activation by CDK-activating kinase. This mutation also deletes motif XI known to be required for kinase function and is, therefore, expected to generate a null allele. In stark contrast, CDK3 from two wild-mice species (Mus spretus and Mus mus castaneus) lack this mutation. These data indicate that CDK3 is not required for M. musculus development and suggest that any functional role played by CDK3 in the G1/S-phase transition is likely to be redundant with another CDK.
Resumo:
A cDNA from a novel Ca2+-dependent member of the mitochondrial solute carrier superfamily was isolated from a rabbit small intestinal cDNA library. The full-length cDNA clone was 3,298 nt long and coded for a protein of 475 amino acids, with four elongation factor-hand motifs located in the N-terminal half of the molecule. The 25-kDa N-terminal polypeptide was expressed in Escherichia coli, and it was demonstrated that it bound Ca2+, undergoing a reversible and specific conformational change as a result. The conformation of the polypeptide was sensitive to Ca2+ which was bound with high affinity (Kd ≈ 0.37 μM), the apparent Hill coefficient for Ca2+-induced changes being about 2.0. The deduced amino acid sequence of the C-terminal half of the molecule revealed 78% homology to Grave disease carrier protein and 67% homology to human ADP/ATP translocase; this sequence homology identified the protein as a new member of the mitochondrial transporter superfamily. Northern blot analysis revealed the presence of a single transcript of about 3,500 bases, and low expression of the transporter could be detected in the kidney but none in the liver. The main site of expression was the colon with smaller amounts found in the small intestine proximal to the ileum. Immunoelectron microscopy localized the transporter in the peroxisome, although a minor fraction was found in the mitochondria. The Ca2+ binding N-terminal half of the transporter faces the cytosol.
Resumo:
One of the rare examples of a single major gene underlying a naturally occurring behavioral polymorphism is the foraging locus of Drosophila melanogaster. Larvae with the rover allele, forR, have significantly longer foraging path lengths on a yeast paste than do those homozygous for the sitter allele, fors. These variants do not differ in general activity in the absence of food. The evolutionary significance of this polymorphism is not as yet understood. Here we examine the effect of high and low animal rearing densities on the larval foraging path-length phenotype and show that density-dependent natural selection produces changes in this trait. In three unrelated base populations the long path (rover) phenotype was selected for under high-density rearing conditions, whereas the short path (sitter) phenotype was selected for under low-density conditions. Genetic crosses suggested that these changes resulted from alterations in the frequency of the fors allele in the low-density-selected lines. Further experiments showed that density-dependent selection during the larval stage rather than the adult stage of development was sufficient to explain these results. Density-dependent mechanisms may be sufficient to maintain variation in rover and sitter behavior in laboratory populations.
Resumo:
A novel RNase activity was identified in a yeast RNA polymerase I (pol I) in vitro transcription system. Transcript cleavage occurred at the 3′ end and was dependent on the presence of ternary pol I/DNA/RNA complexes and an additional protein factor not identical to transcription factor IIS (TFIIS). Transcript cleavage was observed both on arrested complexes at the linearized ends of the transcribed DNA and on intrinsic blocks of the DNA template. Shortened transcripts that remained associated within the ternary complexes were capable of resuming RNA chain elongation. Possible functions of the nuclease for transcript elongation or termination are discussed.
Resumo:
In heart, a robust regulatory mechanism is required to counteract the regenerative Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. Several mechanisms, including inactivation, adaptation, and stochastic closing of ryanodine receptors (RyRs) have been proposed, but no conclusive evidence has yet been provided. We probed the termination process of Ca2+ release by using a technique of imaging local Ca2+ release, or “Ca2+ spikes”, at subcellular sites; and we tracked the kinetics of Ca2+ release triggered by L-type Ca2+ channels. At 0 mV, Ca2+ release occurred and terminated within 40 ms after the onset of clamp pulses (0 mV). Increasing the open-duration and promoting the reopenings of Ca2+ channels with the Ca2+ channel agonist, FPL64176, did not prolong or trigger secondary Ca2+ spikes, even though two-thirds of the sarcoplasmic reticulum Ca2+ remained available for release. Latency of Ca2+ spikes coincided with the first openings but not with the reopenings of L-type Ca2+ channels. After an initial maximal release, even a multi-fold increase in unitary Ca2+ current induced by a hyperpolarization to −120 mV failed to trigger additional release, indicating absolute refractoriness of RyRs. When the release was submaximal (e.g., at +30 mV), tail currents did activate additional Ca2+ spikes; confocal images revealed that they originated from RyRs unfired during depolarization. These results indicate that Ca2+ release is terminated primarily by a highly localized, use-dependent inactivation of RyRs but not by the stochastic closing or adaptation of RyRs in intact ventricular myocytes.
Resumo:
To determine the mechanisms responsible for the termination of Ca2+-activated Cl− currents (ICl(Ca)), simultaneous measurements of whole cell currents and intracellular Ca2+ concentration ([Ca2+]i) were made in equine tracheal myocytes. In nondialyzed cells, or cells dialyzed with 1 mM ATP, ICl(Ca) decayed before the [Ca2+]i decline, whereas the calcium-activated potassium current decayed at the same rate as [Ca2+]i. Substitution of AMP-PNP or ADP for ATP markedly prolonged the decay of ICl(Ca), resulting in a rate of current decay similar to that of the fall in [Ca2+]i. In the presence of ATP, dialysis of the calmodulin antagonist W7, the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN93, or a CaMKII-specific peptide inhibitor the rate of ICl(Ca) decay was slowed and matched the [Ca2+]i decline, whereas H7, a nonspecific kinase inhibitor with low affinity for CaMKII, was without effect. When a sustained increase in [Ca2+]i was produced in ATP dialyzed cells, the current decayed completely, whereas in cells loaded with 5′-adenylylimidodiphosphate (AMP-PNP), KN93, or the CaMKII inhibitory peptide, ICl(Ca) did not decay. Slowly decaying currents were repeatedly evoked in ADP- or AMP-PNP-loaded cells, but dialysis of adenosine 5′-O-(3-thiotriphosphate) or okadaic acid resulted in a smaller initial ICl(Ca), and little or no current (despite a normal [Ca2+]i transient) with a second stimulation. These data indicate that CaMKII phosphorylation results in the inactivation of calcium-activated chloride channels, and that transition from the inactivated state to the closed state requires protein dephosphorylation.
Resumo:
Although the regulation of mitochondrial DNA (mtDNA) copy number is performed by nuclear-coded factors, very little is known about the mechanisms controlling this process. We attempted to introduce nonhuman ape mtDNA into human cells harboring either no mtDNA or mutated mtDNAs (partial deletion and tRNA gene point mutation). Unexpectedly, only cells containing no mtDNA could be repopulated with nonhuman ape mtDNA. Cells containing a defective human mtDNA did not incorporate or maintain ape mtDNA and therefore died under selection for oxidative phosphorylation function. On the other hand, foreign human mtDNA was readily incorporated and maintained in these cells. The suicidal preference for self-mtDNA showed that functional parameters associated with oxidative phosphorylation are less relevant to mtDNA maintenance and copy number control than recognition of mtDNA self-determinants. Non–self-mtDNA could not be maintained into cells with mtDNA even if no selection for oxidative phosphorylation was applied. The repopulation kinetics of several mtDNA forms after severe depletion by ethidium bromide treatment showed that replication and maintenance of mtDNA in human cells are highly dependent on molecular features, because partially deleted mtDNA molecules repopulated cells significantly faster than full-length mtDNA. Taken together, our results suggest that mtDNA copy number may be controlled by competition for limiting levels of trans-acting factors that recognize primarily mtDNA molecular features. In agreement with this hypothesis, marked variations in mtDNA levels did not affect the transcription of nuclear-coded factors involved in mtDNA replication.
Resumo:
Under free running conditions, FREQUENCY (FRQ) protein, a central component of the Neurospora circadian clock, is progressively phosphorylated, becoming highly phosphorylated before its degradation late in the circadian day. To understand the biological function of FRQ phosphorylation, kinase inhibitors were used to block FRQ phosphorylation in vivo and the effects on FRQ and the clock observed. 6-dimethylaminopurine (a general kinase inhibitor) is able to block FRQ phosphorylation in vivo, reducing the rate of phosphorylation and the degradation of FRQ and lengthening the period of the clock in a dose-dependent manner. To confirm the role of FRQ phosphorylation in this clock effect, phosphorylation sites in FRQ were identified by systematic mutagenesis of the FRQ ORF. The mutation of one phosphorylation site at Ser-513 leads to a dramatic reduction of the rate of FRQ degradation and a very long period (>30 hr) of the clock. Taken together, these data strongly suggest that FRQ phosphorylation triggers its degradation, and the degradation rate of FRQ is a major determining factor for the period length of the Neurospora circadian clock.
Resumo:
Arrestins are regulatory proteins that participate in the termination of G protein-mediated signal transduction. The major arrestin in the Drosophila visual system, Arrestin 2 (Arr2), is phosphorylated in a light-dependent manner by a Ca2+/calmodulin-dependent protein kinase and has been shown to be essential for the termination of the visual signaling cascade in vivo. Here, we report the isolation of nine alleles of the Drosophila photoreceptor cell-specific arr2 gene. Flies carrying each of these alleles underwent light-dependent retinal degeneration and displayed electrophysiological defects typical of previously identified arrestin mutants, including an allele encoding a protein that lacks the major Ca2+/calmodulin-dependent protein kinase site. The phosphorylation mutant had very low levels of phosphorylation and lacked the light-dependent phosphorylation observed with wild-type Arr2. Interestingly, we found that the Arr2 phosphorylation mutant was still capable of binding to rhodopsin; however, it was unable to release from membranes once rhodopsin had converted back to its inactive form. This finding suggests that phosphorylation of arrestin is necessary for the release of arrestin from rhodopsin. We propose that the sequestering of arrestin to membranes is a possible mechanism for retinal disease associated with previously identified rhodopsin alleles in humans.
Resumo:
The Gly-Ala repeat (GAr) of the Epstein–Barr virus nuclear antigen-1 is a transferable element that inhibits in cis ubiquitin/proteasome-dependent proteolysis. We have investigated this inhibitory activity by using green fluorescent protein-based reporters that have been targeted for proteolysis by N end rule or ubiquitin-fusion degradation signals, resulting in various degrees of destabilization. Degradation of the green fluorescent protein substrates was inhibited on insertion of a 25-aa GAr, but strongly destabilized reporters were protected only partially. Protection could be enhanced by increasing the length of the repeat. However, reporters containing the Ub-R and ubiquitin-fusion degradation signals were degraded even in the presence of a 239-aa GAr. In accordance, insertion of a powerful degradation signal relieved the blockade of proteasomal degradation in Epstein–Barr virus nuclear antigen-1. Our findings suggest that the turnover of natural substrates may be finely tuned by GAr-like sequences that counteract targeting signals for proteasomal destruction.
Resumo:
The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose–response is observed in the morphogenesis of the penian bone, the baculum, which further suggests that digits and external genitalia share this genetic control mechanism. A progressive reduction in the dose of Hox gene products led first to ectrodactyly, then to olygodactyly and adactyly. Interestingly, this transition between the pentadactyl to the adactyl formula went through a step of polydactyly. We propose that in the distal appendage of polydactylous short-digited ancestral tetrapods, such as Acanthostega, the HoxA complex was predominantly active. Subsequent recruitment of the HoxD complex contributed to both reductions in digit number and increase in digit length. Thus, transition through a polydactylous limb before reaching and stabilizing the pentadactyl pattern may have relied, at least in part, on asynchronous and independent changes in the regulation of HoxA and HoxD gene complexes.
Resumo:
Using a group of structurally related cytofectins, the effects of different vehicle constituents and mixing techniques on the physical properties and biological activity of lipoplexes were systematically examined. Physical properties were examined using a combination of dye accessibility assays, centrifugation, gel electrophoresis and dynamic light scattering. Biological activity was examined using in vitro transfection. Lipoplexes were formulated using two injection vehicles commonly used for in vivo delivery (PBS pH 7.2 and 0.9% saline), and a sodium phosphate vehicle previously shown to enhance the biological activity of naked pDNA and lipoplex formulations. Phosphate was found to be unique in its effect on lipoplexes. Specifically, the accessible pDNA in lipoplexes formulated with cytofectins containing a γ-amine substitution in the headgroup was dependent on alkyl side chain length and sodium phosphate concentration, but the same effects were not observed when using cytofectins containing a β-OH headgroup substitution. The physicochemical features of the phosphate anion, which give rise to this effect in γ-amine cytofectins, were deduced using a series of phosphate analogs. The effects of the formulation vehicle on transfection were found to be cell type-dependent; however, of the formulation variables examined, the liposome/pDNA mixing method had the greatest effect on transgene expression in vitro. Thus, though predictive physical structure relationships involving the vehicle and cytofectin components of the lipoplex were uncovered, they did not extrapolate to trends in biological activity.
Resumo:
In skeletal muscle, transcription of the gene encoding the mouse type Iα (RIα) subunit of the cAMP-dependent protein kinase is initiated from the alternative noncoding first exons 1a and 1b. Here, we report that activity of the promoter upstream of exon 1a (Pa) depends on two adjacent E boxes (E1 and E2) in NIH 3T3-transfected fibroblasts as well as in intact muscle. Both basal activity and MyoD transactivation of the Pa promoter require binding of the upstream stimulating factors (USF) to E1. E2 binds either an unknown protein in a USF/E1 complex-dependent manner or MyoD. Both E2-bound proteins seem to function as repressors, but with different strengths, of the USF transactivation potential. Previous work has shown localization of the RIα protein at the neuromuscular junction. Using DNA injection into muscle of plasmids encoding segments of RIα or RIIα fused to green fluorescent protein, we demonstrate that anchoring at the neuromuscular junction is specific to RIα subunits and requires the amino-terminal residues 1–81. Mutagenesis of Phe-54 to Ala in the full-length RIα–green fluorescent protein template abolishes localization, indicating that dimerization of RIα is essential for anchoring. Moreover, two other hydrophobic residues, Val-22 and Ile-27, are crucial for localization of RIα at the neuromuscular junction. These amino acids are involved in the interaction of the Caenorhabditis elegans type Iα homologue RCE with AKAPCE and for in vitro binding of RIα to dual A-kinase anchoring protein 1. We also show enrichment of dual A-kinase anchoring protein 1 at the neuromuscular junction, suggesting that it could be responsible for RIα tethering at this site.
Resumo:
The orchid Dactylorhiza sambucina shows a stable and dramatic flower-color polymorphism, with both yellow- and purple-flowered individuals present in natural populations throughout the range of the species in Europe. The evolutionary significance of flower-color polymorphisms found in many rewardless orchid species has been discussed at length, but the mechanisms responsible for their maintenance remain unclear. Laboratory experiments have suggested that behavioral responses by pollinators to lack of reward availability might result in a reproductive advantage for rare-color morphs. Consequently, we performed an experiment varying the relative frequency of the two color morphs of D. sambucina to test whether rare morph advantage acted in the natural habitat of the species. We show here clear evidence from this manipulative experiment that rare-color morphs have reproductive advantage through male and female components. This is the first demonstration, to our knowledge, that negative frequency-dependent selection through pollinator preference for rare morphs can cause the maintenance of a flower-color polymorphism.