2 resultados para LEMNA-GIBBA DUCKWEED
em National Center for Biotechnology Information - NCBI
Resumo:
Two important signaling systems involved in the growth and development of plants, those triggered by the photoreceptor phytochrome and the hormone abscisic acid (ABA), are involved in the regulation of expression of the NPR1 gene of Lemna gibba. We previously demonstrated that phytochrome action mediates changes in ABA levels in L. gibba, correlating with changes in gene expression evoked by stimulation of the phytochrome system. We have now further characterized phytochrome- and ABA-mediated regulation of L. gibba NPR1 gene expression using a transient particle bombardment assay, demonstrating that regulatory elements controlling responses to both stimuli reside within 156 nucleotides upstream of the transcription start. Linker scan (LS) analysis of the region from −156 to −70 was used to identify two specific requisite and nonredundant cis-acting promoter elements between −143 to −135 (LS2) and −113 to −101 (LS5). Mutation of either of these elements resulted in a coordinate loss of regulation by phytochrome and ABA. This suggests that, unlike the L. gibba Lhcb2*1 promoter, in which phytochrome and ABA regulatory elements are separable, the phytochrome response of the L. gibba NPR1 gene can be attributed to alterations in ABA levels.
Resumo:
We recently presented clear evidence that the major low-phosphate-inducible phosphatase of the duckweed Spirodela oligorrhiza is a glycosylphosphatidylinositol (GPI)-anchored protein, and, to our knowledge, is the first described from higher plants (N. Morita, H. Nakazato, H. Okuyama, Y. Kim, G.A. Thompson, Jr. [1996] Biochim Biophys Acta 1290: 53–62). In this report the purified 57-kD phosphatase is shown to be a purple metalloenzyme containing Fe and Mn atoms and having an absorption maximum at 556 nm. The phosphatase activity was only slightly inhibited by tartrate, as expected for a purple acid phosphatase (PAP). Furthermore, the protein cross-reacted with an anti-Arabidopsis PAP antibody on immunoblots. The N-terminal amino acid sequence of the phosphatase was very similar to those of Arabidopsis, red kidney bean (Phaseolus vulgaris), and soybean (Glycine max) PAP. Extracts of S. oligorrhiza plants incubated with the GPI-specific precursor [3H]ethanolamine were treated with antibodies raised against the purified S. oligorrhiza phosphatase. Radioactivity from the resulting immunoprecipitates was specifically associated with a 57-kD band on sodium dodecyl sulfate-polyacrylamide gels. These results, together with previous findings, strongly indicate that the GPI-anchored phosphatase of S. oligorrhiza is a PAP.