3 resultados para LARGE THERMAL HYSTERESIS

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical problem of the thermal explosion in a long cylindrical vessel is modified so that only a fraction α of its wall is ideally thermally conducting while the remaining fraction 1−α is thermally isolated. Partial isolation of the wall naturally reduces the critical radius of the vessel. Most interesting is the case when the structure of the boundary is a periodic one, so that the alternating conductive α and isolated 1−α parts of the boundary occupy together the segments 2π/N (N is the number of segments) of the boundary. A numerical investigation is performed. It is shown that at small α and large N, the critical radius obeys a scaling law with the coefficients depending on N. For large N, the result is obtained that in the central core of the vessel the temperature distribution is axisymmetric. In the boundary layer near the wall having the thickness ≈2πr0/N (r0 is the radius of the vessel), the temperature distribution varies sharply in the peripheral direction. The temperature distribution in the axisymmetric core at the critical value of the vessel radius is subcritical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form α-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the α-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides.