13 resultados para Kirkman, Thomas P.
em National Center for Biotechnology Information - NCBI
Resumo:
The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron–sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron–sulfur cluster N2 to quinone.
Resumo:
Human T lymphotropic virus type 1 (HTLV-1) -associated myelopathy/tropic spastic paraparesis is a demyelinating inflammatory neurologic disease associated with HTLV-1 infection. HTLV-1 Tax11–19-specific cytotoxic T cells have been isolated from HLA-A2-positive patients. We have used a peptide-loaded soluble HLA-A2–Ig complex to directly visualize HTLV-1 Tax11–19-specific T cells from peripheral blood and cerebrospinal fluid without in vitro stimulation. Five of six HTLV-1-associated myelopathy/tropic spastic paraparesis patients carried a significant number (up to 13.87%) of CD8+ lymphocytes specific for the HTLV-1 Tax11–19 peptide in their peripheral blood, which were not found in healthy controls. Simultaneous comparison of peripheral blood and cerebrospinal fluid from one patient revealed 2.5-fold more Tax11–19-specific T cells in the cerebrospinal fluid (23.7% vs. 9.4% in peripheral blood lymphocyte). Tax11–19-specific T cells were seen consistently over a 9-yr time course in one patient as far as 19 yrs after the onset of clinical symptoms. Further analysis of HTLV-1 Tax11–19-specific CD8+ T lymphocytes in HAM/TSP patients showed different expression patterns of activation markers, intracellular TNF-α and γ-interferon depending on the severity of the disease. Thus, visualization of antigen-specific T cells demonstrates that HTLV-1 Tax11–19-specific CD8+ T cells are activated, persist during the chronic phase of the disease, and accumulate in cerebrospinal fluid, showing their pivotal role in the pathogenesis of this neurologic disease.
Resumo:
Rhodopsin is a prototypical G protein-coupled receptor that is activated by photoisomerization of its 11-cis-retinal chromophore. Mutant forms of rhodopsin were prepared in which the carboxylic acid counterion was moved relative to the positively charged chromophore Schiff base. Nanosecond time-resolved laser photolysis measurements of wild-type recombinant rhodopsin and two mutant pigments then were used to determine reaction schemes and spectra of their early photolysis intermediates. These results, together with linear dichroism data, yielded detailed structural information concerning chromophore movements during the first microsecond after photolysis. These chromophore structural changes provide a basis for understanding the relative movement of rhodopsin’s transmembrane helices 3 and 6 required for activation of rhodopsin. Thus, early structural changes following isomerization of retinal are linked to the activation of this G protein-coupled receptor. Such rapid structural changes lie at the heart of the pharmacologically important signal transduction mechanisms in a large variety of receptors, which use extrinsic activators, but are impossible to study in receptors using diffusible agonist ligands.
Resumo:
During the period of September 1997 through July 1998, two coelacanth fishes were captured off Manado Tua Island, Sulawesi, Indonesia. These specimens were caught almost 10,000 km from the only other known population of living coelacanths, Latimeria chalumnae, near the Comores. The Indonesian fish was described recently as a new species, Latimeria menadoensis, based on morphological differentiation and DNA sequence divergence in fragments of the cytochrome b and 12S rRNA genes. We have obtained the sequence of 4,823 bp of mitochondrial DNA from the same specimen, including the entire genes for cytochrome b, 12S rRNA, 16S rRNA, four tRNAs, and the control region. The sequence is 4.1% different from the published sequence of an animal captured from the Comores, indicating substantial divergence between the Indonesian and Comorean populations. Nine morphological and meristic differences are purported to distinguish L. menadoensis and L. chalumnae, based on comparison of a single specimen of L. menadoensis to a description of five individuals of L. chalumnae from the Comores. A survey of the literature provided data on 4 of the characters used to distinguish L. menadoensis from L. chalumnae from an additional 16 African coelacanths; for all 4 characters, the Indonesian sample was within the range of variation reported for the African specimens. Nonetheless, L. chalumnae and L. menadoensis appear to be separate species based on divergence of mitochondrial DNA.
Resumo:
It is widely conjectured that muscle shortens because portions of myosin molecules (the “cross-bridges”) impel the actin filament to which they transiently attach and that the impulses result from rotation of the cross-bridges. Crystallography indicates that a cross-bridge is articulated–consisting of a globular catalytic/actin-binding domain and a long lever arm that may rotate. Conveniently, a rhodamine probe with detectable attitude can be attached between the globular domain and the lever arm, enabling the observer to tell whether the anchoring region rotates. Well-established signature effects observed in shortening are tension changes resulting from the sudden release or quick stretch of active muscle fibers. In this investigation we found that closely correlated with such tension changes are changes in the attitude of the rhodamine probes. This correlation strongly supports the conjecture about how shortening is achieved.
Resumo:
α-Melanocyte stimulating hormone (α-MSH) analogs, cyclized through site-specific rhenium (Re) and technetium (Tc) metal coordination, were structurally characterized and analyzed for their abilities to bind α-MSH receptors present on melanoma cells and in tumor-bearing mice. Results from receptor-binding assays conducted with B16 F1 murine melanoma cells indicated that receptor-binding affinity was reduced to approximately 1% of its original levels after Re incorporation into the cyclic Cys4,10, d-Phe7–α-MSH4-13 analog. Structural analysis of the Re–peptide complex showed that the disulfide bond of the original peptide was replaced by thiolate–metal–thiolate cyclization. A comparison of the metal-bound and metal-free structures indicated that metal complexation dramatically altered the structure of the receptor-binding core sequence. Redesign of the metal binding site resulted in a second-generation Re–peptide complex (ReCCMSH) that displayed a receptor-binding affinity of 2.9 nM, 25-fold higher than the initial Re–α-MSH analog. Characterization of the second-generation Re–peptide complex indicated that the peptide was still cyclized through Re coordination, but the structure of the receptor-binding sequence was no longer constrained. The corresponding 99mTc- and 188ReCCMSH complexes were synthesized and shown to be stable in phosphate-buffered saline and to challenges from diethylenetriaminepentaacetic acid (DTPA) and free cysteine. In vivo, the 99mTcCCMSH complex exhibited significant tumor uptake and retention and was effective in imaging melanoma in a murine-tumor model system. Cyclization of α-MSH analogs via 99mTc and 188Re yields chemically stable and biologically active molecules with potential melanoma-imaging and therapeutic properties.
Resumo:
A human fibroblast cDNA expression library was screened for cDNA clones giving rise to flat colonies when transfected into v-Ki-ras-transformed NIH 3T3 cells. One such gene, RECK, encodes a membrane-anchored glycoprotein of about 110 kDa with multiple epidermal growth factor-like repeats and serine-protease inhibitor-like domains. While RECK mRNA is expressed in various human tissues and untransformed cells, it is undetectable in tumor-derived cell lines and oncogenically transformed cells. Restored expression of RECK in malignant cells resulted in suppression of invasive activity with concomitant decrease in the secretion of matrix metalloproteinase-9 (MMP-9), a key enzyme involved in tumor invasion and metastasis. Moreover, purified RECK protein was found to bind to, and inhibit the proteolytic activity of, MMP-9. Thus, RECK may link oncogenic signals to tumor invasion and metastasis.
Resumo:
HIV-1 entry into CD4+ cells requires the sequential interactions of the viral envelope glycoproteins with CD4 and a coreceptor such as the chemokine receptors CCR5 and CXCR4. A plausible approach to blocking this process is to use small molecule antagonists of coreceptor function. One such inhibitor has been described for CCR5: the TAK-779 molecule. To facilitate the further development of entry inhibitors as antiviral drugs, we have explored how TAK-779 acts to prevent HIV-1 infection, and we have mapped its site of interaction with CCR5. We find that TAK-779 inhibits HIV-1 replication at the membrane fusion stage by blocking the interaction of the viral surface glycoprotein gp120 with CCR5. We could identify no amino acid substitutions within the extracellular domain of CCR5 that affected the antiviral action of TAK-779. However, alanine scanning mutagenesis of the transmembrane domains revealed that the binding site for TAK-779 on CCR5 is located near the extracellular surface of the receptor, within a cavity formed between transmembrane helices 1, 2, 3, and 7.
Resumo:
The Ras-related small GTPases Rac, Rho, Cdc42, and RalA bind filamin, an actin filament-crosslinking protein that also links membrane and other intracellular proteins to actin. Of these GTPases only RalA binds filamin in a GTP-specific manner, and GTP-RalA elicits actin-rich filopods on surfaces of Swiss 3T3 cells and recruits filamin into the filopodial cytoskeleton. Either a dominant negative RalA construct or the RalA-binding domain of filamin 1 specifically block Cdc42-induced filopod formation, but a Cdc42 inhibitor does not impair RalA’s effects, which, unlike Cdc42, are Rac independent. RalA does not generate filopodia in filamin-deficient human melanoma cells, whereas transfection of filamin 1 restores the functional response. RalA therefore is a downstream intermediate in Cdc42-mediated filopod production and uses filamin in this pathway.
Resumo:
The visual pigment rhodopsin is a prototypical G protein-coupled receptor. These receptors have seven transmembrane helices and are activated by specific receptor–ligand interactions. Rhodopsin is unusual in that its retinal prosthetic group serves as an antagonist in the dark in the 11-cis conformation but is rapidly converted to an agonist on photochemical cis to trans isomerization. Receptor–ligand interactions in rhodopsin were studied in the light and dark by regenerating site-directed opsin mutants with synthetic retinal analogues. A progressive decrease in light-dependent transducin activity was observed when a mutant opsin with a replacement of Gly121 was regenerated with 11-cis-retinal analogues bearing progressively larger R groups (methyl, ethyl, propyl) at the C9 position of the polyene chain. A progressive decrease in light activity was also observed as a function of increasing size of the residue at position 121 for both the 11-cis-9-ethyl- and the 11-cis-9-propylretinal pigments. In contrast, a striking increase of receptor activity in the dark—i.e., without chromophore isomerization—was observed when the molecular volume at either position 121 of opsin or C9 of retinal was increased. The ability of bulky replacements at either position to hinder ligand incorporation and to activate rhodopsin in the dark suggests a direct interaction between these two sites. A molecular model of the retinal-binding site of rhodopsin is proposed that illustrates the specific interaction between Gly121 and the C9 methyl group of 11-cis-retinal. Steric interactions in this region of rhodopsin are consistent with the proposal that movement of transmembrane helices 3 and 6 is concomitant with receptor activation.
Resumo:
Invertebrate species possess one or two Na+ channel genes, yet there are 10 in mammals. When did this explosive growth come about during vertebrate evolution? All mammalian Na+ channel genes reside on four chromosomes. It has been suggested that this came about by multiple duplications of an ancestral chromosome with a single Na+ channel gene followed by tandem duplications of Na+ channel genes on some of these chromosomes. Because a large-scale expansion of the vertebrate genome likely occurred before the divergence of teleosts and tetrapods, we tested this hypothesis by cloning Na+ channel genes in a teleost fish. Using an approach designed to clone all of the Na+ channel genes in a genome, we found six Na+ channel genes. Phylogenetic comparisons show that each teleost gene is orthologous to a Na+ channel gene or gene cluster on a different mammalian chromosome, supporting the hypothesis that four Na+ channel genes were present in the ancestors of teleosts and tetrapods. Further duplications occurred independently in the teleost and tetrapod lineages, with a greater number of duplications in tetrapods. This pattern has implications for the evolution of function and specialization of Na+ channel genes in vertebrates. Sodium channel genes also are linked to homeobox (Hox) gene clusters in mammals. Using our phylogeny of Na+ channel genes to independently test between two models of Hox gene evolution, we support the hypothesis that Hox gene clusters evolved as (AB) (CD) rather than {D[A(BC)]}.
Resumo:
Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.
Resumo:
We present a method (ENERGI) for extracting energy-like quantities from a data base of protein structures. In this paper, we use the method to generate pairwise additive amino acid "energy" scores. These scores are obtained by iteration until they correctly discriminate a set of known protein folds from decoy conformations. The method succeeds in lattice model tests and in the gapless threading problem as defined by Maiorov and Crippen [Maiorov, V. N. & Crippen, G. M. (1992) J. Mol. Biol. 227, 876-888]. A more challenging test of threading a larger set of test proteins derived from the representative set of Hobohm and Sander [Hobohm, U. & Sander, C. (1994) Protein Sci. 3, 522-524] is used as a "workbench" for exploring how the ENERGI scores depend on their parameter sets.