15 resultados para K-R-I-T Motor Car Company
em National Center for Biotechnology Information - NCBI
Resumo:
Saponins are glycosylated plant secondary metabolites found in many major food crops [Price, K. R., Johnson, I. T. & Fenwick, G. R. (1987) CRC Crit. Rev. Food Sci. Nutr. 26, 27–133]. Because many saponins have potent antifungal properties and are present in healthy plants in high concentrations, these molecules may act as preformed chemical barriers to fungal attack. The isolation of plant mutants defective in saponin biosynthesis represents a powerful strategy for evaluating the importance of these compounds in plant defense. The oat root saponin avenacin A-1 fluoresces under ultraviolet illumination [Crombie, L., Crombie, W. M. L. & Whiting, D. A. (1986) J. Chem. Soc. Perkins 1, 1917–1922], a property that is extremely rare among saponins. Here we have exploited this fluorescence to isolate saponin-deficient (sad) mutants of a diploid oat species, Avena strigosa. These sad mutants are compromised in their resistance to a variety of fungal pathogens, and a number of lines of evidence suggest that this compromised disease resistance is a direct consequence of saponin deficiency. Because saponins are widespread throughout the plant kingdom, this group of secondary metabolites may have general significance as antimicrobial phytoprotectants.
Resumo:
Conclusions have differed in studies that have compared vaccine efficacy in groups receiving influenza vaccine for the first time to efficacy in groups vaccinated more than once. For example, the Hoskins study [Hoskins, T. W., Davis, J. R., Smith, A. J., Miller, C. L. & Allchin, A. (1979) Lancet i, 33–35] concluded that repeat vaccination was not protective in the long term, whereas the Keitel study [Keitel, W. A., Cate, T. R., Couch, R. B., Huggins, L. L. & Hess, K. R. (1997) Vaccine 15, 1114–1122] concluded that repeat vaccination provided continual protection. We propose an explanation, the antigenic distance hypothesis, and test it by analyzing seven influenza outbreaks that occurred during the Hoskins and Keitel studies. The hypothesis is that variation in repeat vaccine efficacy is due to differences in antigenic distances among vaccine strains and between the vaccine strains and the epidemic strain in each outbreak. To test the hypothesis, antigenic distances were calculated from historical hemagglutination inhibition assay tables, and a computer model of the immune response was used to predict the vaccine efficacy of individuals given different vaccinations. The model accurately predicted the observed vaccine efficacies in repeat vaccinees relative to the efficacy in first-time vaccinees (correlation 0.87). Thus, the antigenic distance hypothesis offers a parsimonious explanation of the differences between and within the Hoskins and Keitel studies. These results have implications for the selection of influenza vaccine strains, and also for vaccination strategies for other antigenically variable pathogens that might require repeated vaccination.
Resumo:
In Escherichia coli, 1-deoxy-d-xylulose (or its 5-phosphate, DXP) is the biosynthetic precursor to isopentenyl diphosphate [Broers, S. T. J. (1994) Dissertation (Eidgenössische Technische Hochschule, Zürich)], thiamin, and pyridoxol [Himmeldirk, K., Kennedy, I. A., Hill, R. E., Sayer, B. G. & Spenser, I. D. (1996) Chem. Commun. 1187–1188]. Here we show that an open reading frame at 9 min on the chromosomal map of E. coli encodes an enzyme (deoxyxylulose-5-phosphate synthase, DXP synthase) that catalyzes a thiamin diphosphate-dependent acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield DXP. We have cloned and overexpressed the gene (dxs), and the enzyme was purified 17-fold to a specific activity of 0.85 unit/mg of protein. The reaction catalyzed by DXP synthase yielded exclusively DXP, which was characterized by 1H and 31P NMR spectroscopy. Although DXP synthase of E. coli shows sequence similarity to both transketolases and the E1 subunit of pyruvate dehydrogenase, it is a member of a distinct protein family, and putative DXP synthase sequences appear to be widespread in bacteria and plant chloroplasts.
Resumo:
Human T cell leukemia/lymphotropic virus type I (HTLV-I) induces adult T cell leukemia/lymphoma (ATLL). The mechanism of HTLV-I oncogenesis in T cells remains partly elusive. In vitro, HTLV-I induces ligand-independent transformation of human CD4+ T cells, an event that correlates with acquisition of constitutive phosphorylation of Janus kinases (JAK) and signal transducers and activators of transcription (STAT) proteins. However, it is unclear whether the in vitro model of HTLV-I transformation has relevance to viral leukemogenesis in vivo. Here we tested the status of JAK/STAT phosphorylation and DNA-binding activity of STAT proteins in cell extracts of uncultured leukemic cells from 12 patients with ATLL by either DNA-binding assays, using DNA oligonucleotides specific for STAT-1 and STAT-3, STAT-5 and STAT-6 or, more directly, by immunoprecipitation and immunoblotting with anti-phosphotyrosine antibody for JAK and STAT proteins. Leukemic cells from 8 of 12 patients studied displayed constitutive DNA-binding activity of one or more STAT proteins, and the constitutive activation of the JAK/STAT pathway was found to persist over time in the 2 patients followed longitudinally. Furthermore, an association between JAK3 and STAT-1, STAT-3, and STAT-5 activation and cell-cycle progression was demonstrated by both propidium iodide staining and bromodeoxyuridine incorporation in cells of four patients tested. These results imply that JAK/STAT activation is associated with replication of leukemic cells and that therapeutic approaches aimed at JAK/STAT inhibition may be considered to halt neoplastic growth.
Resumo:
A Gouy-Chapman-Stern model has been developed for the computation of surface electrical potential (ψ0) of plant cell membranes in response to ionic solutes. The present model is a modification of an earlier version developed to compute the sorption of ions by wheat (Triticum aestivum L. cv Scout 66) root plasma membranes. A single set of model parameters generates values for ψ0 that correlate highly with published ζ potentials of protoplasts and plasma membrane vesicles from diverse plant sources. The model assumes ion binding to a negatively charged site (R− = 0.3074 μmol m−2) and to a neutral site (P0 = 2.4 μmol m−2) according to the reactions R− + IΖ ⇌ RIΖ−1 and P0 + IΖ ⇌ PIΖ, where IΖ represents an ion of charge Ζ. Binding constants for the negative site are 21,500 m−1 for H+, 20,000 m−1 for Al3+, 2,200 m−1 for La3+, 30 m−1 for Ca2+ and Mg2+, and 1 m−1 for Na+ and K+. Binding constants for the neutral site are 1/180 the value for binding to the negative site. Ion activities at the membrane surface, computed on the basis of ψ0, appear to determine many aspects of plant-mineral interactions, including mineral nutrition and the induction and alleviation of mineral toxicities, according to previous and ongoing studies. A computer program with instructions for the computation of ψ0, ion binding, ion concentrations, and ion activities at membrane surfaces may be requested from the authors.
Resumo:
After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.
Resumo:
Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease.
Resumo:
To analyze the function of the 5' DNase I hypersensitive sites (HSs) of the locus control region (LCR) on beta-like globin gene expression, a 2.3-kb deletion of 5'HS3 or a 1.9-kb deletion of 5'HS2 was recombined into a beta-globin locus yeast artificial chromosome, and transgenic mice were produced. Deletion of 5'HS3 resulted in a significant decrease of epsilon-globin gene expression and an increase of gamma-globin gene expression in embryonic cells. Deletion of 5'HS2 resulted in only a small decrease in expression of epsilon-, gamma-, and beta-globin mRNA at all stages of development. Neither deletion affected the temporal pattern of globin gene switching. These results suggest that the LCR contains functionally redundant elements and that LCR complex formation does not require the presence of all DNase I hypersensitive sites. The phenotype of the 5'HS3 deletion suggests that individual HSs may influence the interaction of the LCR with specific globin gene promoters during the course of ontogeny.
Resumo:
The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.
Resumo:
Exposure of Arabidopsis thaliana to ozone results in the expression of a number of defense-related genes that are also induced during a hypersensitive response. A potential common link between the activation of defense gene expression during a hypersensitive response and by ozone treatment is the production of active oxygen species and the accumulation of hydrogen peroxide. Here we report that salicylic acid accumulation, which can be induced by hydrogen peroxide and is required for the expression of both a hypersensitive response and systemic acquired resistance, is also required for the induction of some, but not all, ozone-induced mRNAs examined. In addition, we show that ozone exposure triggers induced resistance of A. thaliana to infection with virulent phytopathogenic Pseudomonas syringae strains. Infection of transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of salicylic acid, or npr1 mutant plants, which are defective in the expression of systemic acquired resistance at a step downstream of salicylic acid, demonstrated that the signaling pathway activated during ozone-induced resistance overlaps with the systemic acquired resistance activation pathway and is salicylic acid dependent. Interestingly, plants expressing salicylate hydroxylase exhibited increased sensitivity to ozone exposure. These results demonstrate that ozone activates at least two distinct signaling pathways, including a salicylic acid dependent pathway previously shown to be associated with the activation of pathogen defense reactions, and that this latter pathway also induces a protective response to ozone.
Resumo:
Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species.
Resumo:
The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.
Resumo:
Molecular modeling has been used to predict that 2,6-disubstituted amidoanthraquinones, and not the 1,4 series, should preferentially interact with and stabilize triple-stranded DNA structures over duplex DNA. This is due to marked differences in the nature of chromophore-base stacking and groove accessibility for the two series. A DNA foot-printing method that monitors the extent of protection from DNase I cleavage on triplex formation has been used to examine the effects of a number of synthetic isomer compounds in the 1,4 and 2,6 series. The experimental results are in accord with the predicted behavior and confirm that the 1,4 series bind preferentially to double- rather than triple-stranded DNA, whereas the isomeric 2,6 derivatives markedly favor binding to triplex DNA.
Resumo:
To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.