11 resultados para Juvenile Hemochromatosis

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b5, and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This ω-hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammalian muscle a postnatal switch in functional properties of neuromuscular transmission occurs when miniature end plate currents become shorter and the conductance and Ca2+ permeability of end plate channels increases. These changes are due to replacement during early neonatal development of the γ-subunit of the fetal acetylcholine receptor (AChR) by the ɛ-subunit. The long-term functional consequences of this switch for neuromuscular transmission and motor behavior of the animal remained elusive. We report that deletion of the ɛ-subunit gene caused in homozygous mutant mice the persistence of γ-subunit gene expression in juvenile and adult animals. Neuromuscular transmission in these animals is based on fetal type AChRs present in the end plate at reduced density. Impaired neuromuscular transmission, progressive muscle weakness, and atrophy caused premature death 2 to 3 months after birth. The results demonstrate that postnatal incorporation into the end plate of ɛ-subunit containing AChRs is essential for normal development of skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common autosomal recessive disease associated with loss of regulation of dietary iron absorption and excessive iron deposition in major organs of the body. Recently, a candidate gene for HH (also called HFE) was identified that encodes a novel MHC class I-like protein. Most patients with HH are homozygous for the same mutation in the HFE gene, resulting in a C282Y change in the HFE protein. Studies in cultured cells show that the C282Y mutation abrogates the binding of the recombinant HFE protein to β2-microglobulin (β2M) and disrupts its transport to the cell surface. The HFE protein was shown by immunohistochemistry to be expressed in certain epithelial cells throughout the human alimentary tract and to have a unique localization in the cryptal cells of small intestine, where signals to regulate iron absorption are received from the body. In the studies presented here, we demonstrate by immunohistochemistry that the HFE protein is expressed in human placenta in the apical plasma membrane of the syncytiotrophoblasts, where the transferrin-bound iron is normally transported to the fetus via receptor-mediated endocytosis. Western blot analyses show that the HFE protein is associated with β2M in placental membranes. Unexpectedly, the transferrin receptor was also found to be associated with the HFE protein/β2M complex. These studies place the normal HFE protein at the site of contact with the maternal circulation where its association with transferrin receptor raises the possibility that the HFE protein plays some role in determining maternal/fetal iron homeostasis. These findings also raise the question of whether mutations in the HFE gene can disrupt this association and thereby contribute to some forms of neonatal iron overload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is the most common autosomal recessive disorder known in humans. A candidate gene for HH called HFE has recently been cloned that encodes a novel member of the major histocompatibility complex class I family. Most HH patients are homozygous for a Cys-282→Tyr (C282Y) mutation in HFE gene, which has been shown to disrupt interaction with β2-microglobulin; a second mutation, His-63→Asp (H63D), is enriched in HH patients who are heterozygous for C282Y mutation. The aims of this study were to determine the effects of the C282Y and H63D mutations on the cellular trafficking and degradation of the HFE protein in transfected COS-7 cells. The results indicate that, while the wild-type and H63D HFE proteins associate with β2-microglobulin and are expressed on the cell surface of COS-7 cells, these capabilities are lost by the C282Y HFE protein. We present biochemical and immunofluorescence data that indicate that the C282Y mutant protein: (i) is retained in the endoplasmic reticulum and middle Golgi compartment, (ii) fails to undergo late Golgi processing, and (iii) is subject to accelerated degradation. The block in intracellular transport, accelerated turnover, and failure of the C282Y protein to be presented normally on the cell surface provide a possible basis for impaired function of this mutant protein in HH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolactin (PRL) is widely considered to be the juvenile hormone of anuran tadpoles and to counteract the effects of thyroid hormone (TH), the hormone that controls amphibian metamorphosis. This putative function was concluded mainly from experiments in which mammalian PRL was injected into tadpoles or added to cultured tadpole tissues. In this study, we show that overexpression of ovine or Xenopus laevis PRL in transgenic X. laevis does not prolong tadpole life, establishing that PRL does not play a role in the life cycle of amphibians that is equivalent to that of juvenile hormone in insect metamorphosis. However, overexpression of PRL produces tailed frogs by reversing specifically some but not all of the programs of tail resorption and stimulating growth of fibroblasts in the tail. Whereas TH induces muscle resorption in tails of these transgenics, the tail fibroblasts continue to proliferate resulting in a fibrotic tail that is resistant to TH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile hormones (JH), a sesquiterpenoid group of ligands that regulate developmental transitions in insects, bind to the nuclear receptor ultraspiracle (USP). In fluorescence-based binding assays, USP protein binds JH III and JH III acid with specificity, adopting for each ligand a different final conformational state. JH III treatment of Saccharomyces cerevisiae expressing a LexA-USP fusion protein stabilizes an oligomeric association containing this protein, as detected by formation of a protein–DNA complex, and induces USP-dependent transcription in a reporter assay. We propose that regulation of morphogenetic transitions in invertebrates involves binding of JH or JH-like structures to USP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of many Caribbean reefs from coral to macroalgal dominance has been a prominent issue in coral reef ecology for more than 20 years. Alternative stable state theory predicts that these changes are reversible but, to date, there is little indication of this having occurred. Here we present evidence of the initiation of such a reversal in Jamaica, where shallow reefs at five sites along 8 km of coastline now are characterized by a sea urchin-grazed zone with a mean width of 60 m. In comparison to the seaward algal zone, macroalgae are rare in the urchin zone, where the density of Diadema antillarum is 10 times higher and the density of juvenile corals is up to 11 times higher. These densities are close to those recorded in the late 1970s and early 1980s and are in striking contrast to the decade-long recruitment failure for both Diadema and scleractinians. If these trends continue and expand spatially, reefs throughout the Caribbean may again become dominated by corals and algal turf.

Relevância:

20.00% 20.00%

Publicador: