22 resultados para Johnston, Derland

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DCs) instruct and activate a naive immune system to mount a response toward foreign proteins. Therefore, it has been hypothesized that an ideal vaccine strategy would be to directly introduce genes encoding antigens into DCs. To test this strategy quantitatively, we have compared the immune response elicited by a genetically transfected DC line to that induced by a fibroblast line, or standard genetic immunization. We observe that a single injection of 500–1,000 transfected DCs can produce a response comparable to that of standard genetic immunization, whereas fibroblasts, with up to 50-fold greater transfection efficiency, were less potent. We conclude that transfection of a small number of DCs is sufficient to initiate a wide variety of immune responses. These results indicate that targeting genes to DCs will be important for controlling and augmenting the immunological outcome in genetic immunization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown previously that the Swi5 transcription factor regulates the expression of the SIC1 Cdk inhibitor in late mitosis. This suggests that Swi5 might control other genes with roles in ending mitosis. We identified a gene with a Swi5-binding site in the promoter that encoded a protein with high homology to Pcl2, a cyclin-like protein that associates with the Cdk Pho85. This gene, PCL9, is indeed regulated by Swi5 in late M phase, the only cyclin known to be expressed at this point in the cell cycle. The Pcl9 protein is associated with a Pho85-dependent protein kinase activity, and the protein is unstable with peak levels occurring in late M phase. PCL2 is already known to be expressed in late G1 and we find that, in addition, it is also regulated by Swi5 in telophase. The expression of PCL2 and PCL9 at this stage of the cell cycle implies a role for the Pho85 Cdk at the end of mitosis. Consistent with this a synthetic interaction was observed between pho85Δ and strains deleted for SIC1, SWI5, and SPO12. These and other studies support the notion that the M/G1 switch is a major cell cycle transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously isolated the SKN7 gene in a screen designed to isolate new components of the G1-S cell cycle transcription machinery in budding yeast. We have now found that Skn7 associates with Mbp1, the DNA-binding component of the G1-S transcription factor DSC1/MBF. SKN7 and MBP1 show several genetic interactions. Skn7 overexpression is lethal and is suppressed by a mutation in MBP1. Similarly, high overexpression of Mbp1 is lethal and can be suppressed by skn7 mutations. SKN7 is also required for MBP1 function in a mutant compromised for G1-specific transcription. Gel-retardation assays indicate that Skn7 is not an integral part of MBF. However, a physical interaction between Skn7 and Mbp1 was detected using two-hybrid assays and GST pulldowns. Thus, Skn7 and Mbp1 seem to form a transcription factor independent of MBF. Genetic data suggest that this new transcription factor could be involved in the bud-emergence process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Childhood exposure to low-level lead can permanently reduce intelligence, but the neurobiologic mechanism for this effect is unknown. We examined the impact of lead exposure on the development of cortical columns, using the rodent barrel field as a model. In all areas of mammalian neocortex, cortical columns constitute a fundamental structural unit subserving information processing. Barrel field cortex contains columnar processing units with distinct clusters of layer IV neurons that receive sensory input from individual whiskers. In this study, rat pups were exposed to 0, 0.2, 1, 1.5, or 2 g/liter lead acetate in their dam's drinking water from birth through postnatal day 10. This treatment, which coincides with the development of segregated columns in the barrel field, produced blood lead concentrations from 1 to 31 μg/dl. On postnatal day 10, the area of the barrel field and of individual barrels was measured. A dose-related reduction in barrel field area was observed (Pearson correlation = −0.740; P < 0.001); mean barrel field area in the highest exposure group was decreased 12% versus controls. Individual barrels in the physiologically more active caudoventral group were affected preferentially. Total cortical area measured in the same sections was not altered significantly by lead exposure. These data support the hypothesis that lead exposure may impair the development of columnar processing units in immature neocortex. We demonstrate that low levels of blood lead, in the range seen in many impoverished inner-city children, cause structural alterations in a neocortical somatosensory map.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the mechanism of action responsible for the in vivo antitumor activity of a phosphorothioate antisense inhibitor targeted against human C-raf kinase (ISIS 5132, also known as CGP69846A), a series of mismatched phosphorothioate analogs of ISIS 5132 or CGP69846A were synthesized and characterized with respect to hybridization affinity, inhibitory effects on C-raf gene expression in vitro, and antitumor activity in vivo. Incorporation of a single mismatch into the sequence of ISIS 5132 or CGP69846A resulted in reduced hybridization affinity toward C-raf RNA sequences and reduced inhibitory activity against C-raf expression in vitro and tumor growth in vivo. Moreover, incorporation of additional mismatches resulted in further loss of in vitro and in vivo activity in a manner that correlated well with a hybridization-based (i.e., antisense) mechanism of action. These results provide important experimental evidence supporting an antisense mechanism of action underlying the in vivo antitumor activity displayed by ISIS 5132 or CGP69846A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cDNA microarray is one technological approach that has the potential to accurately measure changes in global mRNA expression levels. We report an assessment of an optimized cDNA microarray platform to generate accurate, precise and reliable data consistent with the objective of using microarrays as an acquisition platform to populate gene expression databases. The study design consisted of two independent evaluations with 70 arrays from two different manufactured lots and used three human tissue sources as samples: placenta, brain and heart. Overall signal response was linear over three orders of magnitude and the sensitivity for any element was estimated to be 2 pg mRNA. The calculated coefficient of variation for differential expression for all non-differentiated elements was 12–14% across the entire signal range and did not vary with array batch or tissue source. The minimum detectable fold change for differential expression was 1.4. Accuracy, in terms of bias (observed minus expected differential expression ratio), was less than 1 part in 10 000 for all non-differentiated elements. The results presented in this report demonstrate the reproducible performance of the cDNA microarray technology platform and the methods provide a useful framework for evaluating other technologies that monitor changes in global mRNA expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density (-gNa = approximately 4 mS/cm2) of rapidly inactivating voltage-dependent Na+ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na+ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If -gNa in the axon hillock and initial segment is the same as in the soma [as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]], then -gNa in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mean nuclear 2C DNA content (C equaling haploid DNA per nucleus) of the first leaf of the sunflower, Helianthus annuus L., is influenced by the quality and the quantity of light. Seedlings of two inbred lines, RHA 299 and RHA 271 were germinated and grown in controlled environmental conditions. Lighting was adjusted to provide different combinations of photon flux densities and red to far red (R:FR) ratios. At R:FR = 5.8 and photon flux densities of 170 mumol.m-2.s-1, 200 mumol.m-2.s-1, and 230 mumol.m-2.s-1, DNA content remained high and relatively constant (x = 6.97 pg for RHA 271 and x = 7.32 pg for RHA 299). When the photon flux density range (R:FR = 5.8) was elevated to 350 mumol.m-2.s-1, 410 mumol.m-2.s-1, and 470 mumol.m-2.s-1, mean DNA content was reduced to 6.23 pg (RHA 271) and 6.46 pg (RHA 299). At R:FR = 1.5, mean DNA content was consistently high (7.2-7.9 pg) only at the lowest photon flux density of 170 mumol.m-2.s-1. Significant decreases in DNA content (< or = 12%) were observed at photon flux densities of 200 mumol.m-2.s-1 and 230 mumol.m-2.s-1. At the higher photon flux densities (350 mumol.m-2.s-1, 410 mumol.m-2.s-1, and 470 mumol.m-2.s-1) and R:RF = 1.5, the plants had extremely low DNA contents (mean x = 3.36 pg for RHA 271 and 3.41 pg for RHA 299) and high between-plant variance. The instability of DNA content, particularly for plants grown under light that is far red rich, suggests that phytochromes may be involved in regulating DNA content of the sunflower.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Movement of material between intracellular compartments takes place through the production of transport vesicles derived from donor membranes. Vesicle budding that results from the interaction of cytoplasmic coat proteins (coatomer and clathrin) with intracellular organelles requires a type of GTP-binding protein termed ADP-ribosylation factor (ARF). The GTPase cycle of ARF proteins that allows the uncoating and fusion of a transport vesicle with a target membrane is mediated by ARF-dependent GTPase-activating proteins (GAPs). A previously identified yeast protein, Gcs1, exhibits structural similarity to a mammalian protein with ARF-GAP activity in vitro. We show herein that the Gcs1 protein also has ARF-GAP activity in vitro using two yeast Arf proteins as substrates. Furthermore, Gcs1 function is needed for the efficient secretion of invertase, as expected for a component of vesicle transport. The in vivo role of Gcs1 as an ARF GAP is substantiated by genetic interactions between mutations in the ARF1/ARF2 redundant pair of yeast ARF genes and a gcs1-null mutation; cells lacking both Gcs1 and Arf1 proteins are markedly impaired for growth compared with cells missing either protein. Moreover, cells with decreased levels of Arf1 or Arf2 protein, and thus with decreased levels of GTP-Arf, are markedly inhibited for growth by increased GCS1 gene dosage, presumably because increased levels of Gcs1 GAP activity further decrease GTP-Arf levels. Thus by both in vitro and in vivo criteria, Gcs1 is a yeast ARF GAP.