5 resultados para Job Opportunities and Basic Skills Training Program (U.S.)
em National Center for Biotechnology Information - NCBI
Resumo:
Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer’s disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer’s disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer’s disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid β-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.
Resumo:
The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.
Resumo:
A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.
Resumo:
Despite significant infiltration into tumors and atherosclerotic plaques, the role of T lymphocytes in these pathological conditions is still unclear. We have demonstrated that tumor-infiltrating lymphocytes (TILs) and plaque-infiltrating lymphocytes (PILs) produce heparin-binding epidermal growth factor-like growth factor (HB-EGF) and basic fibroblast growth factor (bFGF) in vitro under nonspecific conditions and in vivo in tumors by immunohistochemical staining. HB-EGF and bFGF derived from TILs and PILs directly stimulated tumor cells and vascular smooth muscle cells (SMCs) in vitro, respectively, while bFGF displayed angiogenic properties. Therefore, T cells may play a critical role in the SMC hyperplasia of atherosclerosis and support tumor progression by direct stimulation and angiogenesis.
Resumo:
Elicitins are a family of small proteins secreted by species of Phytophthora. They are thought to be major determinants of the resistance response of tobacco against these oomycetes, since purified elicitins, alone and at low concentrations, can induce vigorous defense responses in tobacco (i.e., hypersensitive cell death and resistance against subsequent pathogen attack), and in vitro elicitin production by Phytophthora isolates is strongly negatively correlated with their pathogenicity on tobacco plants. A number of elicitins have been purified and their amino acid sequences have been determined and found to be conserved. A three-dimensional structure for elicitin is emerging from nuclear magnetic resonance studies. Two structural classes, alpha and beta, are distinguished by their biological effects when applied to decapitated stems or petioles; the beta class causes more necrosis on leaves and provides better subsequent protection against pathogen attack. However, both these classes of elicitins will similarly cause necrosis when each is, instead, directly infiltrated into tobacco leaf panels. Effects of elicitins on tobacco cells include rapid electrolyte leakage, changes in protein phosphorylation and amounts of active oxygen species, and later production of ethylene and capsidiol. The sites of initial interaction with tobacco cells are unknown, but the interaction appears to induce general defense-related responses.