10 resultados para Jayashankar Prasad

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria have been proposed to possess base excision repair processes to correct oxidative damage to the mitochondrial genome. As the only DNA polymerase (pol) present in mitochondria, pol γ is necessarily implicated in such processes. Therefore, we tested the ability of the catalytic subunit of human pol γ to participate in uracil-provoked base excision repair reconstituted in vitro with purified components. Subsequent to actions of uracil-DNA glycosylase and apurinic/apyrimidinic endonuclease, human pol γ was able to fill a single nucleotide gap in the presence of a 5′ terminal deoxyribose phosphate (dRP) flap. We report here that the catalytic subunit of human pol γ catalyzes release of the dRP residue from incised apurinic/apyrimidinic sites to produce a substrate for DNA ligase. The heat sensitivity of this activity suggests the dRP lyase function requires a three-dimensional protein structure. The dRP lyase activity does not require divalent metal ions, and the ability to trap covalent enzyme-DNA complexes with NaBH4 strongly implicates a Schiff base intermediate in a β-elimination reaction mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectrin (βIΣ∗) and ankyrin (AnkG119) associate with Golgi membranes and the dynactin complex, but their role in vesicle trafficking remains uncertain. We find that the actin-binding domain and membrane-association domain 1 (MAD1) of βI spectrin together form a constitutive Golgi targeting signal in transfected MDCK cells. Expression of this signal in transfected cells disrupts the endogenous Golgi spectrin skeleton and blocks transport of α- and β-Na,K-ATPase and vesicular stomatitis virus-G protein from the endoplasmic reticulum (ER) but does not disrupt the formation of Golgi stacks, the distribution of β-COP, or the transport and surface display of E-cadherin. The Golgi spectrin skeleton is thus required for the transport of a subset of membrane proteins from the ER to the Golgi. We postulate that together with polyfunctional adapter proteins such as AnkG119, Golgi spectrin forms a docking complex that acts prior to the cis-Golgi, presumably with vesicular–tubular clusters (VTCs or ERGIC), to sequester specific membrane proteins into vesicles transiting between the ER and Golgi, and subsequently (probably involving other isoforms of spectrin and ankyrin) to mediate cargo transport within the Golgi and to other membrane compartments. We hypothesize that this vesicular spectrin–ankyrin adapter-protein trafficking (or tethering) system (SAATS) mediates the capture and transport of many membrane proteins and acts in conjunction with vesicle-targeting molecules to effect the efficient transport of cargo proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A synchronized heart beat is controlled by pacemaking impulses conducted through Purkinje fibers. In chicks, these impulse-conducting cells are recruited during embryogenesis from myocytes in direct association with developing coronary arteries. In culture, the vascular cytokine endothelin converts embryonic myocytes to Purkinje cells, implying that selection of conduction phenotype may be mediated by an instructive cue from arteries. To investigate this hypothesis, coronary arterial development in the chicken embryo was either inhibited by neural crest ablation or activated by ectopic expression of fibroblast growth factor (FGF). Ablation of cardiac neural crest resulted in ≈70% reductions (P < 0.01) in the density of intramural coronary arteries and associated Purkinje fibers. Activation of coronary arterial branching was induced by retrovirus-mediated overexpression of FGF. At sites of FGF-induced hypervascularization, ectopic Purkinje fibers differentiated adjacent to newly induced coronary arteries. Our data indicate the necessity and sufficiency of developing arterial bed for converting a juxtaposed myocyte into a Purkinje fiber cell and provide evidence for an inductive function for arteriogenesis in heart development distinct from its role in establishing coronary blood circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectrin is an important structural component of the plasma membrane skeleton. Heretofore-unidentified isoforms of spectrin also associate with Golgi and other organelles. We have discovered another member of the β-spectrin gene family by homology searches of the GenBank databases and by 5′ rapid amplification of cDNA ends of human brain cDNAs. Collectively, 7,938 nucleotides of contiguous clones are predicted to encode a 271,294-Da protein, called βIII spectrin, with conserved actin-, protein 4.1-, and ankyrin-binding domains, membrane association domains 1 and 2, a spectrin dimer self-association site, and a pleckstrin-homology domain. βIII spectrin transcripts are concentrated in the brain and present in the kidneys, liver, and testes and the prostate, pituitary, adrenal, and salivary glands. All of the tested tissues contain major 9.0-kb and minor 11.3-kb transcripts. The human βIII spectrin gene (SPTBN2) maps to chromosome 11q13 and the mouse gene (Spnb3) maps to a syntenic region close to the centromere on chromosome 19. Indirect immunofluorescence studies of cultured cells using antisera specific to human βIII spectrin reveal a Golgi-associated and punctate cytoplasmic vesicle-like distribution, suggesting that βIII spectrin associates with intracellular organelles. This distribution overlaps that of several Golgi and vesicle markers, including mannosidase II, p58, trans-Golgi network (TGN)38, and β-COP and is distinct from the endoplasmic reticulum markers calnexin and Bip. Liver Golgi membranes and other vesicular compartment markers cosediment in vitro with βIII spectrin. βIII spectrin thus constitutes a major component of the Golgi and vesicular membrane skeletons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent endogenous activator of the cell death pathway and functions by activating the cell surface death receptors 4 and 5 (DR4 and DR5). TRAIL is nontoxic in vivo and preferentially kills neoplastically transformed cells over normal cells by an undefined mechanism. Radiotherapy is a common treatment for breast cancer as well as many other cancers. Here we demonstrate that ionizing radiation can sensitize breast carcinoma cells to TRAIL-induced apoptosis. This synergistic effect is p53-dependent and may be the result of radiation-induced up-regulation of the TRAIL-receptor DR5. Importantly, TRAIL and ionizing radiation have a synergistic effect in the regression of established breast cancer xenografts. Changes in tumor cellularity and extracellular space were monitored in vivo by diffusion-weighted magnetic resonance imaging (diffusion MRI), a noninvasive technique to produce quantitative images of the apparent mobility of water within a tissue. Increased water mobility was observed in combined TRAIL- and radiation-treated tumors but not in tumors treated with TRAIL or radiation alone. Histological analysis confirmed the loss of cellularity and increased numbers of apoptotic cells in TRAIL- and radiation-treated tumors. Taken together, our results provide support for combining radiation with TRAIL to improve tumor eradication and suggest that efficacy of apoptosis-inducing cancer therapies may be monitored noninvasively, using diffusion MRI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the structural organization of the genome is particularly relevant in segmented double-stranded RNA viruses, which exhibit endogenous transcription activity. These viruses are molecular machines capable of repeated cycles of transcription within the intact capsid. Rotavirus, a major cause of infantile gastroenteritis, is a prototypical segmented double-stranded RNA virus. From our three-dimensional structural analyses of rotavirus examined under various chemical conditions using electron cryomicroscopy, we show here that the viral genome exhibits a remarkable conformational flexibility by reversibly changing its packaging density. In the presence of ammonium ions at high pH, the genome condenses to a radius of ≈180 Å from ≈220 Å. Upon returning to physiological conditions, the genome re-expands and fully maintains its transcriptional properties. These studies provide further insights into the genome organization and suggest that the observed isometric and concentric nature of the condensation is due to strong interactions between the genome core and the transcription enzymes anchored to the capsid inner surface. The ability of the genome to condense beyond what is normally observed in the native virus indicates that the negative charges on the RNA in the native state may be only partially neutralized. Partial neutralization may be required to maintain appropriate interstrand spacing for templates to move around the enzyme complexes during transcription. Genome condensation was not observed either with increased cation concentrations at normal pH or at high pH without ammonium ions. This finding indicates that the observed genome condensation is a synergistic effect of hydroxyl and ammonium ions involving disruption of protein–RNA interactions that perhaps facilitate further charge neutralization and consequent reduction in the interstrand spacing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously we have characterized type IB DNA topoisomerase V (topo V) in the hyperthermophile Methanopyrus kandleri. The enzyme has a powerful topoisomerase activity and is abundant in M. kandleri. Here we report two characterizations of topo V. First, we found that its N-terminal domain has sequence homology with both eukaryotic type IB topoisomerases and the integrase family of tyrosine recombinases. The C-terminal part of the sequence includes 12 repeats, each repeat consisting of two similar but distinct helix-hairpin-helix motifs; the same arrangement is seen in recombination protein RuvA and mammalian DNA polymerase β. Second, on the basis of sequence homology between topo V and polymerase β, we predict and demonstrate that topo V possesses apurinic/apyrimidinic (AP) site-processing activities that are important in base excision DNA repair: (i) it incises the phosphodiester backbone at the AP site, and (ii) at the AP endonuclease cleaved AP site, it removes the 5′ 2-deoxyribose 5-phosphate moiety so that a single-nucleotide gap with a 3′-hydroxyl and 5′-phosphate can be filled by a DNA polymerase. Topo V is thus the prototype for a new subfamily of type IB topoisomerases and is the first example of a topoisomerase with associated DNA repair activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the contribution of interleukin-4 (IL-4) to airway inflammation in vivo and to explore directly its relationship to airway reactivity, we created transgenic mice in which the murine cDNA for IL-4 was regulated by the rat Clara cell 10 protein promoter. Expression was detected only in the lung and not in thymus, heart, liver, spleen, kidney, or uterus. The expression of IL-4 elicited hypertrophy of epithelial cells of the trachea, bronchi, and bronchioles. Hypertrophy is due, at least in part, to the accumulation of mucus glycoprotein. Histologic examination of parenchyma revealed multinucleated macrophages and occasional islands of cells consisting largely of eosinophils or lymphocytes. Analysis of lung lavage fluid revealed the presence of a leukocytic infiltrate consisting of lymphocytes, neutrophils and eosinophils. Mice expressing IL-4 had greater baseline airway resistance but did not demonstrate hyperreactivity to methacholine. Thus, the expression of IL-4 selectively within the lung elicits an inflammatory response characterized by epithelial cell hypertrophy, and the accumulation of macrophages, lymphocytes, eosinophils, and neutrophils without resulting in an alteration in airway reactivity to inhaled methacholine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ALLI gene, located at chromosome band 11q23, is involved in acute leukemia through a series of chromosome translocations and fusion to a variety of genes, most frequently to A4 and AF9. The fused genes encode chimeric proteins proteins. Because the Drosophila homologue of ALL1, trithorax, is a positive regulator of homeotic genes and acts at the level of transcription, it is conceivable that alterations in ALL1 transcriptional activity may underlie its action in malignant transformation. To begin studying this, we examined the All1, AF4, AF9, and AF17 proteins for the presence of potential transcriptional regulatory domains. This was done by fusing regions of the proteins to the yeast GAL4 DNA binding domain and assaying their effect on transcription of a reporter gene. A domain of 55 residues positioned at amino acids 2829-2883 of ALL1 was identified as a very strong activator. Further analysis of this domain by in vitro mutagenesis pointed to a core of hydrophobic and acidic residues as critical for the activity. An ALL1 domain that repressed transcription of the reporter gene coincided with the sequence homologous to a segment of DNA methyltransferase. An AF4 polypeptide containing residues 480-560 showed strong activation potential. The C-terminal segment of AF9 spanning amino acids 478-568 transactivated transcription of the reporter gene in HeLa but not in NIH 3T3 cells. These results suggest that ALL1, AF4, and probably AF9 interact with the transcriptional machinery of the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage colony-stimulating factor (M-CSF) is required for the growth and differentiation of mononuclear phagocytes. In the present studies using human monocytes, we show that M-CSF induces interaction of the Grb2 adaptor protein with the focal adhesion kinase pp125FAK. The results demonstrate that tyrosine-phosphorylated pp125FAK directly interacts with the SH2 domain of Grb2. The findings indicate that a pYENV site at Tyr-925 in pp125FAK is responsible for this interaction. We also demonstrate that the Grb2-FAK complex associates with the GTPase dynamin. Dynamin interacts with the SH3 domains of Grb2 and exhibits M-CSF-dependent tyrosine phosphorylation in association with pp125FAK. These findings suggest that M-CSF-induced signaling involves independent Grb2-mediated pathways, one leading to Ras activation and another involving pp125FAK and a GTPase implicated in receptor internalization.