2 resultados para Isotopic substitution

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the detailed mechanism of protein folding requires dynamic, site-specific stereochemical information. The short time response of vibrational spectroscopies allows evaluation of the distribution of populations in rapid equilibrium as the peptide unfolds. Spectral shifts associated with isotopic labels along with local stereochemical sensitivity of vibrational circular dichroism (VCD) allow determination of the segment sequence of unfolding. For a series of alanine-rich peptides that form α-helices in aqueous solution, we used isotopic labeling and VCD to demonstrate that the α-helix noncooperatively unwinds from the ends with increasing temperature. For these blocked peptides, the C-terminal is frayed at 5°C. Ab initio level theoretical simulations of the IR and VCD band shapes are used to analyze the spectra and to confirm the conformation of the labeled components. The VCD signals associated with the labeled residues are amplified by coupling to the nonlabeled parts of the molecule. Thus small labeled segments are detectable and stereochemically defined in moderately large peptides in this report of site-specific peptide VCD conformational analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathognomonic plaques of Alzheimer’s disease are composed primarily of the 39- to 43-aa β-amyloid (Aβ) peptide. Crosslinking of Aβ peptides by tissue transglutaminase (tTg) indicates that Gln15 of one peptide is proximate to Lys16 of another in aggregated Aβ. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the Aβ peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated Aβ. Peptides containing a single carbonyl 13C label at Gln15, Lys16, Leu17, or Val18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 Å. Analysis of these data establish that this central core of Aβ consists of a parallel β-sheet structure in which identical residues on adjacent chains are aligned directly, i.e., in register. Our data, in conjunction with existing structural data, establish that the Aβ fibril is a hydrogen-bonded, parallel β-sheet defining the long axis of the Aβ fibril propagation.