4 resultados para Isotope Labeling.

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although nitric oxide synthase (NOS) is widely considered as the major source of NO in biological cells and tissues, direct evidence demonstrating NO formation from the purified enzyme has been lacking. It was recently reported that NOS does not synthesize NO, but rather generates nitroxyl anion (NO−) that is subsequently converted to NO by superoxide dismutase (SOD). To determine if NOS synthesizes NO, electron paramagnetic resonance (EPR) spectroscopy was applied to directly measure NO formation from purified neuronal NOS. In the presence of the NO trap Fe2+-N-methyl-d-glucamine dithiocarbamate, NO gives rise to characteristic EPR signals with g = 2.04 and aN = 12.7 G, whereas NO− is undetectable. In the presence of l-arginine (l-Arg) and cofactors, NOS generated prominent NO signals. This NO generation did not require SOD, and it was blocked by the specific NOS inhibitor N-nitro-l-arginine methyl ester. Isotope-labeling experiments with l-[15N]Arg further demonstrated that NOS-catalyzed NO arose from the guanidino nitrogen of l-Arg. Measurement of the time course of NO formation demonstrated that it paralleled that of l-citrulline. The conditions used in the prior study were shown to result in potent superoxide generation, and this may explain the failure to measure NO formation in the absence of SOD. These experiments provide unequivocal evidence that NOS does directly synthesize NO from l-Arg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The osmoprotectant 3-dimethylsulfoniopropionate (DMSP) occurs in Gramineae and Compositae, but its synthesis has been studied only in the latter. The DMSP synthesis pathway was therefore investigated in the salt marsh grass Spartina alterniflora Loisel. Leaf tissue metabolized supplied [35S]methionine (Met) to S-methyl-l-Met (SMM), 3-dimethylsulfoniopropylamine (DMSP-amine), and DMSP. The 35S-labeling kinetics of SMM and DMSP-amine indicated that they were intermediates and, consistent with this, the dimethylsulfonium moiety of SMM was shown by stable isotope labeling to be incorporated as a unit into DMSP. The identity of DMSP-amine, a novel natural product, was confirmed by both chemical and mass-spectral methods. S. alterniflora readily converted supplied [35S]SMM to DMSP-amine and DMSP, and also readily converted supplied [35S]DMSP-amine to DMSP; grasses that lack DMSP did neither. A small amount of label was detected in 3-dimethylsulfoniopropionaldehyde (DMSP-ald) when [35S]SMM or [35S]DMSP-amine was given. These results are consistent with the operation of the pathway Met → SMM → DMSP-amine → DMSP-ald → DMSP, which differs from that found in Compositae by the presence of a free DMSP-amine intermediate. This dissimilarity suggests that DMSP synthesis evolved independently in Gramineae and Compositae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutational studies indicate that the superantigen staphylococcal enterotoxin A (SEA) has two separate binding sites for major histocompatibility complex (MHC) class II molecules. Direct evidence is provided here for the formation of SEA-MHC class II trimers in solution. Isoelectric focusing separated SEA-HLA-DR1 complexes into both dimers and HLA-DR1.SEA2 trimers. The molar ratio of components was determined by dual isotope labeling. The SEA mutant SEA-F47S, L48S, Y92A, which is deficient in MHC class II alpha-chain binding, formed only dimers with HLA-DR1, whereas a second SEA mutant, SEA-H225A, which lacks high-affinity MHC class II beta-chain binding was incapable of forming any complexes. Thus SEA binding to its MHC receptor is a two-step process involving initial beta-chain binding followed by cooperative binding of a second SEA molecule to the class II alpha chain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the ability of human immunodeficiency virus (HIV)-infected cells to kill uninfected CD4+ lymphocytes. Infected peripheral blood mononuclear cells were cocultured with autologous 51Cr-labeled uninfected cells. Rapid death of the normal CD4-expressing target population was observed following a brief incubation. Death of blood CD4+ lymphocytes occurred before syncytium formation could be detected or productive viral infection established in the normal target cells. Cytolysis could not be induced by free virus, was dependent on gp120-CD4 binding, and occurred in resting, as well as activated, lymphocytes. CD8+ cells were not involved in this phenomenon, since HIV-infected CEMT4 cells (CD4+, CD8- cells) mediated the cytolysis of uninfected targets. Reciprocal isotope-labeling experiments demonstrated that infected CEMT4 cells did not die in parallel with their targets. The uninfected target cells manifested DNA fragmentation, followed by the release of the 51Cr label. Thus, in HIV patients, infected lymphocytes may cause the depletion of the much larger population of uninfected CD4+ cells without actually infecting them, by triggering an apoptotic death.