9 resultados para Irregularidade menstrual
em National Center for Biotechnology Information - NCBI
Resumo:
The mechanisms underlying the menstrual lysis leading to shedding of the human endometrium and its accompanying bleeding are still largely unknown. In particular, whether breakdown of the endometrial fibrillar extra-cellular matrix that precedes bleeding depends on aspartic-, cysteine-, serine-, or metalloproteinases remains unclear. In the present study, menstrual regression of the human endometrium was mimicked in organ culture. Whereas sex steroids could preserve tissue integrity only in nonperimenstrual explants, matrix breakdown upon sex steroid deprivation was completely and reversibly inhibited at all stages of the menstrual cycle by specific inhibitors of matrix metalloproteinases, but not by inhibitors of the other classes of proteinases. Matrix metalloproteinases are thus identified as the key class of proteinases involved in the initiation of menstruation.
Resumo:
In the cycling human endometrium, the expression of interstitial collagenase (MMP-1) and of several related matrix metalloproteinases (MMPs) follows the late-secretory fall in sex steroid plasma concentrations and is thought to be a critical step leading to menstruation. The rapid and extensive lysis of interstitial matrix that precedes menstrual shedding requires a strict control of these proteinases. However, the mechanism by which ovarian steroids regulate endometrial MMPs remains unclear. We report here that, in the absence of ovarian steroids, MMP-1 expression in endometrial fibroblasts is markedly stimulated by medium conditioned by endometrial epithelial cells. This stimulation can be prevented by antibodies directed against interleukin 1α (IL-1α) but not against several other cytokines. Ovarian steroids inhibit the release of IL-1α and repress MMP-1 production by IL-1α-stimulated fibroblasts. In short-term cultures of endometrial explants obtained throughout the menstrual cycle, the release of both IL-1α and MMP-1 is essentially limited to the perimenstrual phase. We conclude that epithelium-derived IL-1α is the key paracrine inducer of MMP-1 in endometrial fibroblasts. However, MMP-1 production in the human endometrium is ultimately blocked by ovarian steroids, which act both upstream and downstream of IL-1α, thereby exerting an effective control via a “double-block” mechanism.
Resumo:
Our preliminary family studies have suggested that some female first-degree relatives of women with polycystic ovary syndrome (PCOS) have hyperandrogenemia per se. It was our hypothesis that this may be a genetic trait and thus could represent a phenotype suitable for linkage analysis. To investigate this hypothesis, we examined 115 sisters of 80 probands with PCOS from unrelated families. PCOS was diagnosed by the combination of elevated serum androgen levels and ≤6 menses per year with the exclusion of secondary causes. The sisters were compared with 70 healthy age- and weight-comparable control women with regular menses, no clinical evidence of hyperandrogenemia, and normal glucose tolerance. Twenty-two percent of the sisters fulfilled diagnostic criteria for PCOS. In addition, 24% of the sisters had hyperandrogenemia and regular menstrual cycles. Circulating testosterone (T) and nonsex hormone-binding globulin-bound testosterone (uT) levels in both of these groups of sisters were significantly increased compared with unaffected sisters and control women (P < 0.0001 for both T and uT). Probands, sisters with PCOS, and hyperandrogenemic sisters had elevated serum luteinizing hormone levels compared with control women. We conclude that there is familial aggregation of hyperandrogenemia (with or without oligomenorrhea) in PCOS kindreds. In affected sisters, only one-half have oligomenorrhea and hyperandrogenemia characteristic of PCOS, whereas the remaining one-half have hyperandrogenemia per se. This familial aggregation of hyperandrogenemia in PCOS kindreds suggests that it is a genetic trait. We propose that hyperandrogenemia be used to assign affected status in linkage studies designed to identify PCOS genes.
Resumo:
This study was undertaken to determine the modulation of uterine function by chorionic gonadotrophin (CG) in a nonhuman primate. Infusion of recombinant human CG (hCG) between days 6 and 10 post ovulation initiated the endoreplication of the uterine surface epithelium to form distinct epithelial plaques. These plaque cells stained intensely for cytokeratin and the proliferating cell nuclear antigen. The stromal fibroblasts below the epithelial plaques stained positively for α-smooth muscle actin (αSMA). Expression of αSMA is associated with the initiation of decidualization in the baboon endometrium. Synthesis of the glandular secretory protein glycodelin, as assessed by Western blot analysis, was markedly up-regulated by hCG, and this increase was confirmed by immunocytochemistry, Northern blot analysis, and reverse transcriptase-PCR. To determine whether hCG directly modulated these uterine responses, we treated ovariectomized baboons sequentially with estradiol and progesterone to mimic the hormonal profile of the normal menstrual cycle. Infusion of hCG into the oviduct of steroid-hormone-treated ovariectomized baboons induced the expression of αSMA in the stromal cells and glycodelin in the glandular epithelium. The epithelial plaque reaction, however, was not readily evident. These studies demonstrate a physiological effect of CG on the uterine endometrium in vivo and suggest that the primate blastocyst signal, like the blastocyst signals of other species, modulates the uterine environment prior to implantation.
Resumo:
Although it is well established that the secretory activity of the corpus luteum absolutely depends on the presence of pituitary-derived luteinizing hormone (LH), it is unknown why the life span of the corpus luteum is extended during early pregnancy by the placental production of chorionic gonadotropin (CG) but regresses in the presence of LH despite the fact that CG and LH have similar actions on the corpus luteum. To compare the responses of the corpus luteum to LH and human CG (hCG), cynomolgus monkeys whose endogenous gonadotropin secretion was blocked during the luteal phase of the menstrual cycle with a gonadotropin-releasing hormone antagonist were i.v. infused with either LH or CG. Infusion of LH at a constant rate overcame the gonadotropin-releasing hormone antagonist-mediated premature luteal regression but failed to prolong the functional life span of the corpus luteum. Continuous infusions of hCG did not effect a pregnancy-like pattern of gonadotropin secretion, but the functional life span of the corpus luteun was extended in two of three animals. Infusion of either LH or hCG in an exponentially increasing manner prolonged the functional life span of the corpus luteum beyond its normal duration. These results indicate that luteal regression at the termination of nonfertile menstrual cycles is caused by a large reduction in the responsiveness of the aging corpus luteum to LH, which can be overcome by elevated concentrations of either LH or CG.
Resumo:
Near infrared diffuse optical spectroscopy and diffuse optical imaging are promising methods that eventually may enhance or replace existing technologies for breast cancer screening and diagnosis. These techniques are based on highly sensitive, quantitative measurements of optical and functional contrast between healthy and diseased tissue. In this study, we examine whether changes in breast physiology caused by exogenous hormones, aging, and fluctuations during the menstrual cycle result in significant alterations in breast tissue optical contrast. A noninvasive quantitative diffuse optical spectroscopy technique, frequency-domain photon migration, was used. Measurements were performed on 14 volunteer subjects by using a hand-held probe. Intrinsic tissue absorption and reduced scattering parameters were calculated from frequency-domain photon migration data. Wavelength-dependent absorption (at 674, 803, 849, and 956 nm) was used to determine tissue concentration of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, tissue hemoglobin oxygen saturation, and bulk water content. Results show significant and dramatic differences in optical properties between menopausal states. Average premenopausal intrinsic tissue absorption and reduced scattering values at each wavelength are 2.5- to 3-fold higher and 16–28% greater, respectively, than absorption and scattering for postmenopausal subjects. Absorption and scattering properties for women using hormone replacement therapy are intermediate between premenopausal and postmenopausal populations. Physiological properties show differences in mean total hemoglobin (7.0 μM, 11.8 μM, and 19.2 μM) and water concentration relative to pure water (10.9%, 15.3%, and 27.3%) for postmenopausal, hormone replacement therapy, and premenopausal subjects, respectively. Because of their unique, quantitative information content, diffuse optical methods may play an important role in breast diagnostics and improving our understanding of breast disease.
Resumo:
The characterization of the source of the odor in the human axillary region is not only of commercial interest but is also important biologically because axillary extracts can alter the length and timing of the female menstrual cycle. In males, the most abundant odor component is known to be E-3-methyl-2-hexenoic acid (E-3M2H), which is liberated from nonodorous apocrine secretions by axillary microorganisms. Recently, it was found that in the apocrine gland secretions, 3M2H is carried to the skin surface bound to two proteins, apocrine secretion odor-binding proteins 1 and 2 (ASOB1 and ASOB2) with apparent molecular masses of 45 kDa and 26 kDa, respectively. To better understand the formation of axillary odors and the structural relationship between 3M2H and its carrier protein, the amino acid sequence and glycosylation pattern of ASOB2 were determined by mass spectrometry. The ASOB2 protein was identified as apolipoprotein D (apoD), a known member of the alpha2mu-microglobulin superfamily of carrier proteins also known as lipocalins. The pattern of glycosylation for axillary apoD differs from that reported for plasma apoD, suggesting different sites of expression for the two glycoproteins. In situ hybridization of an oligonucleotide probe against apoD mRNA with axillary tissue demonstrates that the message for synthesis of this protein is specific to the apocrine glands. These results suggest a remarkable similarity between human axillary secretions and nonhuman mammalian odor sources, where lipocalins have been shown to carry the odoriferous signals used in pheromonal communication.