6 resultados para Ionizable

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the yeast, Saccharomyces cerevisiae, oligosaccharyl transferase (OT), which catalyzes the transfer of dolichol-linked oligosaccharide chains to nascent polypeptides in the endoplasmic reticulum, consists of nine nonidentical membrane protein subunits. Genetic and biochemical evidence indicated these nine proteins exist in three subcomplexes. Three of the OT subunits (Ost4p, Ost3p, and Stt3p) have been proposed to exist in one subcomplex. To investigate the interaction of these three membrane proteins, initially we carried out a mutational analysis of Ost4p, which is an extraordinarily small membrane protein containing only 36 amino acid residues. This analysis indicated that when single amino acid residues in a region close to the luminal face of the putative transmembrane domain of Ost4p were changed into an ionizable amino acid such as Lys or Asp, growth at 37°C and OT activity measured in vitro were impaired. In addition, using immunoprecipitation techniques and Western blot analysis, we found that with these mutations the interaction between Ost4p, Ost3p, and Stt3p was disrupted. Introduction of Lys or Asp residues at other positions in the putative transmembrane domain or at the N or C terminus of Ost4p had no effect on disrupting subunit interactions or impairing the activity of OT. These findings suggest that a localized region of the putative transmembrane domain of Ost4p mediates in stabilization of the interaction with the two other OT subunits (Ost3p and Stt3p) in a subcomplex in the endoplasmic reticulum membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have carried out conformational energy calculations on alanine-based copolymers with the sequence Ac-AAAAAXAAAA-NH2 in water, where X stands for lysine or glutamine, to identify the underlying source of stability of alanine-based polypeptides containing charged or highly soluble polar residues in the absence of charge–charge interactions. The results indicate that ionizable or neutral polar residues introduced into the sequence to make them soluble sequester the water away from the CO and NH groups of the backbone, thereby enabling them to form internal hydrogen bonds. This solvation effect dictates the conformational preference and, hence, modifies the conformational propensity of alanine residues. Even though we carried out simulations for specific amino acid sequences, our results provide an understanding of some of the basic principles that govern the process of folding of these short sequences independently of the kind of residues introduced to make them soluble. In addition, we have investigated through simulations the effect of the bulk dielectric constant on the conformational preferences of these peptides. Extensive conformational Monte Carlo searches on terminally blocked 10-mer and 16-mer homopolymers of alanine in the absence of salt were carried out assuming values for the dielectric constant of the solvent ɛ of 80, 40, and 2. Our simulations show a clear tendency of these oligopeptides to augment the α-helix content as the bulk dielectric constant of the solvent is lowered. This behavior is due mainly to a loss of exposure of the CO and NH groups to the aqueous solvent. Experimental evidence indicates that the helical propensity of the amino acids in water shows a dramatic increase on addition of certain alcohols, such us trifluoroethanol. Our results provide a possible explanation of the mechanism by which alcohol/water mixtures affect the free energy of helical alanine oligopeptides relative to nonhelical ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local anesthetic antiarrhythmic drugs block Na+ channels and have important clinical uses. However, the molecular mechanism by which these drugs block the channel has not been established. The family of drugs is characterized by having an ionizable amino group and a hydrophobic tail. We hypothesized that the charged amino group of the drug may interact with charged residues in the channel’s selectivity filter. Mutation of the putative domain III selectivity filter residue of the adult rat skeletal muscle Na+ channel (μ1) K1237E increased resting lidocaine block, but no change was observed in block by neutral analogs of lidocaine. An intermediate effect on the lidocaine block resulted from K1237S and there was no effect from K1237R, implying an electrostatic effect of Lys. Mutation of the other selectivity residues, D400A (domain I), E755A (domain II), and A1529D (domain IV) allowed block by externally applied quaternary membrane-impermeant derivatives of lidocaine (QX314 and QX222) and accelerated recovery from block by internal QX314. Neo-saxitoxin and tetrodotoxin, which occlude the channel pore, reduced the amount of QX314 bound in D400A and A1529D, respectively. Block by outside QX314 in E755A was inhibited by mutation of residues in transmembrane segment S6 of domain IV that are thought to be part of an internal binding site. The results demonstrate that the Na+ channel selectivity filter is involved in interactions with the hydrophilic part of the drugs, and it normally limits extracellular access to and escape from their binding site just within the selectivity filter. Participation of the selectivity ring in antiarrhythmic drug binding and access locates this structure adjacent to the S6 segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model AB, a 20-amino acid peptide that was designed to adopt an alpha beta tertiary structure stabilized by hydrophobic interactions between residues in adjacent helical and extended segments, exhibited large pKa shifts of several ionizable groups and slow hydrogen/deuterium exchange rates of nearly all the peptide amide groups [Butcher, D. J., Bruch, M. D. & Moe, G. T. (1995) Biopolymers 36, 109-120]. These properties, which depend on structure and hydration, are commonly observed in larger proteins but are quite unusual for small peptides. To identify which of several possible features of the peptide design are most important in determining these properties, several closely related analogs of Model AB were characterized by CD and NMR spectroscopy. The results show that hydrophobic interactions between adjacent helical and extended segments are structure-determining and have the additional effect of altering water-peptide interactions over much of the peptide surface. These results may have important implications for understanding mechanisms of protein folding and for the design of independently folding peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The active site of the allosteric chorismate mutase (chorismate pyruvatemutase, EC 5.4.99.5) from yeast Saccharomyces cerevisiae (YCM) was located by comparison with the mutase domain (ECM) of chorismate mutase/prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] (the P protein) from Escherichia coli. Active site domains of these two enzymes show very similar four-helix bundles, each of 94 residues which superimpose with a rms deviation of 1.06 A. Of the seven active site residues, four are conserved: the two arginines, which bind to the inhibitor's two carboxylates; the lysine, which binds to the ether oxygen; and the glutamate, which binds to the inhibitor's hydroxyl group in ECM and presumably in YCM. The other three residues in YCM (ECM) are Thr-242 (Ser-84), Asn-194 (Asp-48), and Glu-246 (Gln-88). This Glu-246, modeled close to the ether oxygen of chorismate in YCM, may function as a polarizing or ionizable group, which provides another facet to the catalytic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residue replacements were made at five positions (Arg-73, Asp-76, Tyr-87, Asp-106, and Asp-201) in the Halobacterium salinarium phototaxis receptor sensory rhodopsin I (SR-I) by site-specific mutagenesis. The sites were chosen for their correspondence in position to residues of functional importance in the homologous light-driven proton pump bacteriorhodopsin found in the same organism. This work identifies a residue in SR-I shown to be of vital importance to its attractant signaling function: Asp-201. The effect of the substitution with the isosteric asparagine is to convert the normally attractant signal of orange light stimulation to a repellent signal. In contrast, similar neutral substitution of the four other ionizable residues near the photoactive site allows essentially normal attractant and repellent phototaxis signaling. Wild-type two-photon repellent signaling by the receptor is intact in the Asp-201 mutant, genetically separating the wild-type attractant and repellent signal generation processes. A possible explanation and implications of the inverted signaling are discussed. Results of neutral residue substitution for Asp-76 confirm our previous evidence that proton transfer reactions involving this residue are not important to phototaxis but that Asp-76 functions as the Schiff base proton acceptor in proton translocation by transducer-free SR-I.