11 resultados para Inventory system with finite backlog

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermodynamic stability and oligomerization status of the tumor suppressor p53 tetramerization domain have been studied experimentally and theoretically. A series of hydrophilic mutations at Met-340 and Leu-344 of human p53 were designed to disrupt the hydrophobic dimer–dimer interface of the tetrameric oligomerization domain of p53 (residues 325–355). Meanfield calculations of the free energy of the solvated mutants as a function of interdimer distance were compared with experimental data on the thermal stability and oligomeric state (tetramer, dimer, or equilibrium mixture of both) of each mutant. The calculations predicted a decreasing stability and oligomeric state for the following amino acids at residue 340: Met (tetramer) > Ser Asp, His, Gln, > Glu, Lys (dimer), whereas the experimental results showed the following order: Met (tetramer) > Ser > Gln > His, Lys > Asp, Glu (dimers). For residue 344, the calculated trend was Leu (tetramer) > Ala > Arg, Gln, Lys (dimer), and the experimental trend was Leu (tetramer) > Ala, Arg, Gln, Lys (dimer). The discrepancy for the lysine side chain at residue 340 is attributed to the dual nature of lysine, both hydrophobic and charged. The incorrect prediction of stability of the mutant with Asp at residue 340 is attributed to the fact that within the meanfield approach, we use the wild-type backbone configuration for all mutants, but low melting temperatures suggest a softening of the α-helices at the dimer–dimer interface. Overall, this initial application of meanfield theory toward a protein-solvent system is encouraging for the application of the theoretical model to more complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sequence divergence acts as a potent barrier to homologous recombination; much of this barrier derives from an antirecombination activity exerted by mismatch repair proteins. An inverted repeat assay system with recombination substrates ranging in identity from 74% to 100% has been used to define the relationship between sequence divergence and the rate of mitotic crossing-over in yeast. To elucidate the role of the mismatch repair machinery in regulating recombination between mismatched substrates, we performed experiments in both wild-type and mismatch repair defective strains. We find that a single mismatch is sufficient to inhibit recombination between otherwise identical sequences, and that this inhibition is dependent on the mismatch repair system. Additional mismatches have a cumulative negative effect on the recombination rate. With sequence divergence of up to approximately 10%, the inhibitory effect of mismatches results mainly from antirecombination activity of the mismatch repair system. With greater levels of divergence, recombination is inefficient even in the absence of mismatch repair activity. In both wild-type and mismatch repair defective strains, an approximate log-linear relationship is observed between the recombination rate and the level of sequence divergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small ligand–receptor interactions underlie many fundamental processes in biology and form the basis for pharmacological intervention of human diseases in medicine. We report herein a genetic system, named the yeast three-hybrid system, for detecting ligand–receptor interactions in vivo. This system is adapted from the yeast two-hybrid system with which a third synthetic hybrid ligand is combined. The feasibility of this system was demonstrated using as the hybrid ligand a heterodimer of covalently linked dexamethasone and FK506. Yeast expressing fusion proteins of the hormone binding domain of the rat glucocorticoid receptor fused to the LexA DNA-binding domain and of FKBP12 fused to a transcriptional activation domain activated reporter genes when plated on medium containing the dexamethasone–FK506 heterodimer. The reporter gene activation is completely abrogated in a competitive manner by the presence of excess FK506. Using this system, we screened a Jurkat cDNA library fused to the transcriptional activation domain in yeast expressing the hormone binding domain of rat glucocorticoid receptor–LexA DNA binding domain fusion protein in the presence of dexamethasone–FK506 heterodimer. We isolated overlapping clones of human FKBP12. These results demonstrate that the three-hybrid system can be used to discover receptors for small ligands and to screen for new ligands to known receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete DNA sequence of Pseudomonas aeruginosa provides an opportunity to apply functional genomics to a major human pathogen. A comparative genomics approach combined with genetic footprinting was used as a strategy to identify genes required for viability in P. aeruginosa. Use of a highly efficient in vivo mariner transposition system in P. aeruginosa facilitated the analysis of candidate genes of this class. We have developed a rapid and efficient allelic exchange system by using the I-SceI homing endonuclease in conjunction with in vitro mariner mutagenesis to generate mutants within targeted regions of the P. aeruginosa chromosome for genetic footprinting analyses. This technique for generating transposon insertion mutants should be widely applicable to other organisms that are not naturally transformable or may lack well developed in vivo transposition systems. We tested this system with three genes in P. aeruginosa that have putative essential homologs in Haemophilus influenzae. We show that one of three H. influenzae essential gene homologs is needed for growth in P. aeruginosa, validating the practicality of this comparative genomics strategy to identify essential genes in P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tetracycline-controlled gene expression system provides a powerful tool to dissect the functions of gene products. However, it often appears difficult to establish cell lines or transgenic animals stably expressing tetracycline-dependent transactivators, possibly as a result of toxicity of the transactivator domains used. In order to overcome this problem, we developed a novel tetracycline-dependent transactivator that works efficiently in mammalian cells. This transactivator is a fusion of the tet reverse repressor mutant and the transcriptional activating domain of human E2F4, which is ubiquitously expressed in vivo. We demonstrate here that this tetracycline-regulated gene expression system provides a two log transcriptional activation in mammalian cells as assessed by northern blot and luciferase analyses. Combining this system with green fluorescent protein reporter systems or microarray gene expression profiling will facilitate the study of gene function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used a genetic method, the yeast substrate-trapping system, to identify substrates for protein tyrosine phosphatases ζ (PTPζ/RPTPβ). This method is based on the yeast two-hybrid system, with two essential modifications: conditional expression of protein tyrosine kinase v-src (active src) to tyrosine-phosphorylate the prey proteins and screening by using a substrate-trap mutant of PTPζ (PTPζ-D1902A) as bait. By using this system, several substrate candidates for PTPζ were isolated. Among them, GIT1/Cat-1 (G protein-coupled receptor kinase-interactor 1/Cool-associated, tyrosine-phosphorylated 1) was examined further. GIT1/Cat-1 bound to PTPζ-D1902A dependent on the substrate tyrosine phosphorylation. Tyrosine-phosphorylated GIT1/Cat-1 was dephosphorylated by PTPζ in vitro. Immunoprecipitation experiments indicated that PTPζ-D1902A and GIT1/Cat-1 form a stable complex also in mammalian cells. Immunohistochemical analyses revealed that PTPζ and GIT1/Cat-1 were colocalized in the processes of pyramidal cells in the hippocampus and neocortex in rat brain. Subcellular colocalization was further verified in the growth cones of mossy fibers from pontine explants and in the ruffling membranes and processes of B103 neuroblastoma cells. Moreover, pleiotrophin, a ligand for PTPζ, increased tyrosine phosphorylation of GIT1/Cat-1 in B103 cells. All these results indicate that GIT1/Cat-1 is a substrate molecule of PTPζ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A system for tetracycline-regulated inducible gene expression was described recently which relies on constitutive expression of a tetracycline-controlled transactivator (tTA) fusion protein combining the tetracycline repressor and the transcriptional activation domain of VP16 [Gossen, M. & Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. This system yielded only low levels of transactivator protein, probably because tTA is toxic. To avoid this difficulty, we placed the tTA gene under the control of the inducible promoter to which tTA binds, making expression of tTA itself inducible and autoregulatory. When used to drive expression of the recombination activating genes 1 and 2 (RAG-1 and RAG-2), the autoregulatory system yielded both substantially higher levels of variable (diversity) joining [V(D)J] recombination activity (70-fold on average) and inducible expression in a much larger fraction of transfected cells (autoregulatory, 90%, vs. constitutive, 18%). In addition, this system allowed the creation of transgenic mice in which expression of a luciferase transgene was inducible tens to hundreds of times the basal levels in most tissues examined. Induced levels of expression were highest in thymus and lung and appear to be substantially higher than in previously reported inducible luciferase transgenic mice created with the constitutive system. With the modified system, inducible transactivator mRNA and protein were easily detected in cell lines by RNA and Western blotting, and transactivator mRNA was detected by RNA blotting in some tissues of transgenic mice. This autoregulatory system represents an improved strategy for tetracycline-regulated gene expression both in cultured cells and in transgenic animals.