3 resultados para International convention for the protection of birds.
em National Center for Biotechnology Information - NCBI
Resumo:
Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the α- or β-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (α-carotene branch), zeaxanthin, and antheraxanthin (β-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), α-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage.
Resumo:
External (environmental) factors affecting the speciation of birds are better known than the internal (genetic) factors. The opposite is true for several groups of invertebrates, Drosophila being the outstanding example. Ideas about the genetics of speciation in general trace back to Dobzhansky who worked with Drosophila. These ideas are an insufficient guide for reconstructing speciation in birds for two main reasons. First, speciation in birds proceeds with the evolution of behavioral barriers to interbreeding; postmating isolation usually evolves much later, perhaps after gene exchange has all but ceased. As a consequence of the slow evolution of postmating isolating factors the scope for reinforcement of premating isolation is small, whereas the opportunity for introgressive hybridization to influence the evolution of diverging species is large. Second, premating isolation may arise from nongenetic, cultural causes; isolation may be affected partly by song, a trait that is culturally inherited through an imprinting-like process in many, but not all, groups of birds. Thus the genetic basis to the origin of bird species is to be sought in the inheritance of adult traits that are subject to natural and sexual selection. Some of the factors involved in premating isolation (plumage, morphology, and behavior) are under single-gene control, most are under polygenic control. The genetic basis of the origin of postmating isolating factors affecting the early development of embryos (viability) and reproductive physiology (sterility) is almost completely unknown. Bird speciation is facilitated by small population size, involves few genetic changes, and occurs relatively rapidly.
Resumo:
More than 30 years ago, Brambell published the hypothesis bearing his name [Brambell, F. W. R., Hemmings, W. A. & Morris, 1. C. (1964) Nature (London) 203, 1352-1355] that remains as the cornerstone for thinking on IgG catabolism. To explain the long survival of IgG relative to other plasma proteins and its pattern of increased fractional catabolism with high concentrations of IgG, Brambell postulated specific IgG "protection receptors" (FcRp) that would bind IgG in pinocytic vacuoles and redirect its transport to the circulation; when the FcRp was saturated, the excess unbound IgG then would pass to unrestricted lysosomal catabolism. Brambell subsequently postulated the neonatal gut transport receptor (FcRn) and showed its similar saturable character. FcRn was recently cloned but FcRp has not been identified. Using a genetic knockout that disrupts the FcRn and intestinal IgG transport, we show that this lesion also disrupts the IgG protection receptor, supporting the identity of these two receptors. IgG catabolism was 10-fold faster and IgG levels were correspondingly lower in mutant than in wild-type mice, whereas IgA was the same between groups, demonstrating the specific effects on the IgG system. Disruption of the FcRp in the mutant mice was also shown to abrogate the classical pattern of decreased IgG survival with higher IgC concentration. Finally, studies in normal mice with monomeric antigen-antibody complexes showed differential catabolism in which antigen dissociates in the endosome and passes to the lysosome, whereas the associated antibody is returned to circulation; in mutant mice, differential catabolism was lost and the whole complex cleared at the same accelerated rate as albumin, showing the central role of the FcRp to the differential catabolism mechanism. Thus, the same receptor protein that mediates the function of the FcRn transiently in the neonate is shown to have its functionally dominant expression as the FcRp throughout life, resolving a longstanding mystery of the identity of the receptor for the protection of IgG. This result also identifies an important new member of the class of recycling surface receptors and enables the design of protein adaptations to exploit this mechanism to improve survivals of other therapeutic proteins in vivo.