3 resultados para International Field Test

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical models suggest that overlapping generations, in combination with a temporally fluctuating environment, may allow the persistence of competitors that otherwise would not coexist. Despite extensive theoretical development, this “storage effect” hypothesis has received little empirical attention. Herein I present the first explicit mathematical analysis of the contribution of the storage effect to the dynamics of competing natural populations. In Oneida Lake, NY, data collected over the past 30 years show a striking negative correlation between the water-column densities of two species of suspension-feeding zooplankton, Daphnia galeata mendotae and Daphnia pulicaria. I have demonstrated competition between these two species and have shown that both possess long-lived eggs that establish overlapping generations. Moreover, recruitment to this long-lived stage varies annually, so that both daphnids have years in which they are favored (for recruitment) relative to their competitor. When the long-term population growth rates are calculated both with and without the effects of a variable environment, I show that D. galeata mendotae clearly cannot persist without the environmental variation and prolonged dormancy (i.e., storage effect) whereas D. pulicaria persists through consistently high per capita recruitment to the long-lived stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Sanfilippo syndrome type B is an autosomal recessive disorder caused by mutation in the gene (NAGLU) encoding α-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. The most serious manifestations are profound mental retardation, intractable behavior problems, and death in the second decade. To generate a model for studies of pathophysiology and of potential therapy, we disrupted exon 6 of Naglu, the homologous mouse gene. Naglu−/− mice were healthy and fertile while young and could survive for 8–12 mo. They were totally deficient in α-N-acetylglucosaminidase and had massive accumulation of heparan sulfate in liver and kidney as well as secondary changes in activity of several other lysosomal enzymes in liver and brain and elevation of gangliosides GM2 and GM3 in brain. Vacuolation was seen in many cells, including macrophages, epithelial cells, and neurons, and became more prominent with age. Although most vacuoles contained finely granular material characteristic of glycosaminoglycan accumulation, large pleiomorphic inclusions were seen in some neurons and pericytes in the brain. Abnormal hypoactive behavior was manifested by 4.5-mo-old Naglu−/− mice in an open field test; the hyperactivity that is characteristic of affected children was not observed even in younger mice. In a Pavlovian fear conditioning test, the 4.5-mo-old mutant mice showed normal response to context, indicating intact hippocampal-dependent learning, but reduced response to a conditioning tone, perhaps attributable to hearing impairment. The phenotype of the α-N-acetylglucosaminidase-deficient mice is sufficiently similar to that of patients with the Sanfilippo syndrome type B to make these mice a good model for study of pathophysiology and for development of therapy.