6 resultados para Intermediate species

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cellular anatomy and expression of glycine decarboxylase (GDC) protein were studied during leaf development of the C3-C4 intermediate species Moricandia arvensis. Leaf anatomy was initially C3-like and the number and profile area of mitochondria in the bundle-sheath cells were the same as those in adjacent mesophyll cells. Between a leaf length of 6 and 12 mm there was a bundle-sheath-specific, 4-fold increase in the number of mitochondrial profiles, followed by a doubling of their individual profile areas as the leaves expanded further. Subunits of GDC were present in whole-leaf extracts before the anatomical development of bundle-sheath cells. Whereas the GDC H-protein content of leaves increased steadily throughout development, the increase in GDC P-protein was synchronous with the development of mitochondria in the bundle sheath. The P-protein was confined to bundle-sheath mitochondria throughout leaf development, and its content in individual mitochondria increased before the anatomical development of the bundle sheath. Anatomical and biochemical attributes of the C3-C4 character were present in the cotyledons and sepals but not in other photosynthetic organs/tissues. In leaves and cotyledons that developed in the dark, the expression of the P-protein and the organellar development were reduced but the bundle-sheath cell specificity was retained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent structural studies of the minimal core DNA-binding domain of p53 (p53DBD) complexed to a single consensus pentamer sequence and of the isolated p53 tetramerization domain have provided valuable insights into their functions, but many questions about their interacting roles and synergism remain unanswered. To better understand these relationships, we have examined the binding of the p53DBD to two biologically important full-response elements (the WAF1 and ribosomal gene cluster sites) by using DNA circularization and analytical ultracentrifugation. We show that the p53DBD binds DNA strongly and cooperatively with p53DBD to DNA binding stoichiometries of 4:1. For the WAF1 element, the mean apparent Kd is (8.3 +/- 1.4) x 10(-8) M, and no intermediate species of lower stoichiometries can be detected. We show further that complex formation induces an axial bend of at least 60 degrees in both response elements. These results, taken collectively, demonstrate that p53DBD possesses the ability to direct the formation of a tight nucleoprotein complex having the same 4:1 DNA-binding stoichiometry as wild-type p53 which is accompanied by a substantial conformational change in the response-element DNA. This suggests that the p53DBD may play a role in the tetramerization function of p53. A possible role in this regard is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the crystal structure of Thermus aquaticus DNA polymerase I in complex with an inhibitory Fab, TP7, directed against the native enzyme. Some of the residues present in a helical conformation in the native enzyme have adopted a γ turn conformation in the complex. Taken together, structural information that describes alteration of helical structure and solution studies that demonstrate the ability of TP7 to inhibit 100% of the polymerase activity of the enzyme suggest that the change in conformation is probably caused by trapping of an intermediate in the helix-coil dynamics of this helix by the Fab. Antibodies directed against modified helices in proteins have long been anticipated. The present structure provides direct crystallographic evidence. The Fab binds within the DNA binding cleft of the polymerase domain, interacting with several residues that are used by the enzyme in binding the primer:template complex. This result unequivocally corroborates inferences drawn from binding experiments and modeling calculations that the inhibitory activity of this Fab is directly attributable to its interference with DNA binding by the polymerase domain of the enzyme. The combination of interactions made by the Fab residues in both the polymerase and the vestigial editing nuclease domain of the enzyme reveal the structural basis of its preference for binding to DNA polymerases of the Thermus species. The orientation of the structure-specific nuclease domain with respect to the polymerase domain is significantly different from that seen in other structures of this polymerase. This reorientation does not appear to be antibody-induced and implies remarkably high relative mobility between these two domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The explanation of patterns in species richness ranks among the most important tasks of ecology. Current theories emphasize the interaction between historical and geographical factors affecting the size of the regional species pool and of locally acting processes such as competitive exclusion, disturbance, productivity, and seasonality. Local species richness, or alpha diversity, of plants and primary consumers has been claimed to peak in habitats of low and intermediate productivity, which, if true, has major implications for conservation. Here, by contrast, we show that local richness of Neotropical primates (platyrrhines) is influenced by both historical biogeography and productivity but not by tree species richness or seasonality. This pattern indicates that habitats with the highest plant productivity are also the richest for many important primary consumers. We show further that fragmentation of Amazonian rain forests in the Pleistocene, if it occurred, appears to have had a negligible influence on primate alpha species richness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Horse ferricytochrome c (cyt c) undergoes exchange of one of its axial heme ligands (Met-80) for one or more non-native ligands under denaturing conditions. We have used 1H NMR spectroscopy to detect two conformations of paramagnetic cyt c with non-native heme ligation through a range of urea concentrations. One non-native form is an equilibrium unfolding intermediate observed under partially denaturing conditions and is attributed to replacement of Met-80 with one or more Lys side chains. The second non-native form, in which the native Met ligand is replaced by a His, is observed under strongly denaturing conditions. Thermodynamic analysis of these data indicates a relatively small ΔG (17 kJ/mol) for the transition from native to the Lys-ligated intermediate and a significantly larger ΔG (47 kJ/mol) for the transition from native to the His-ligated species. Although CD and fluorescence data indicate that the equilibrium unfolding of cyt c is a two-state process, these NMR results implicate an intermediate with His-Lys ligation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ensatina eschscholtzii complex of plethodontid salamanders, a well-known “ring species,” is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochondrial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components that are at or near the species level. The complex is old and apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. While the hypothesis that speciation is retarded by gene flow around the ring is not supported by molecular data, the general biogeographical hypothesis is supported. There is evidence of a north to south range expansion along two axes, with secondary contact and completion of the ring in southern California. Current research targets regions once thought to show primary intergradation, but which molecular markers reveal to be zones of secondary contact. Here emphasis is on the subspecies E. e. xanthoptica, which is involved in four distinct secondary contacts in central California. There is evidence of renewed genetic interactions upon recontact, with greater genetic differentiation within xanthoptica than between it and some of the interacting populations. The complex presents a full array of intermediate conditions between well-marked species and geographically variable populations. Geographically differentiated segments represent a diversity of depths of time of isolation and admixture, reflecting the complicated geomorphological history of California. Ensatina illustrates the continuing difficulty in making taxonomic assignments in complexes studied during species formation.