176 resultados para Interleukin-2 Gene

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interleukin 2 (IL-2) gene is subject to two types of regulation: its expression is T-lymphocyte-specific and it is acutely dependent on specific activation signals. The IL-2 transcriptional apparatus integrates multiple types of biochemical information in determining whether or not the gene will be expressed, using multiple diverse transcription factors that are each optimally activated or inhibited by different signaling pathways. When activation of one or two of these factors is blocked IL-2 expression is completely inhibited. The inability of the other, unaffected factors to work is explained by the striking finding that none of the factors interacts stably with its target site in the IL-2 enhancer unless all the factors are present. Coordinate occupancy of all the sites in the minimal enhancer is apparently maintained by continuous assembly and disassembly cycles that respond to the instantaneous levels of each factor in the nuclear compartment. In addition, the minimal enhancer undergoes specific increases in DNase I accessibility, consistent with dramatic changes in chromatin structure upon activation. Still to be resolved is what interaction(s) conveys T-lineage specificity. In the absence of activating signals, the minimal IL-2 enhancer region in mature T cells is apparently unoccupied, exactly as in non-T lineage cells. However, in a conserved but poorly studied upstream region, we have now mapped several novel sites of DNase I hypersensitivity in vivo that constitutively distinguish IL-2 producer type T cells from cell types that cannot express IL-2. Thus a distinct domain of the IL-2 regulatory sequence may contain sites for competence- or lineage-marking protein contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although prolactin and interleukin 2 (IL-2) can elicit distinct physiological responses, we have found that their signal pathways share a common signal transducer and activator of transcription, STAT5. STAT5 was originally identified as a mammary gland factor induced by prolactin in lactating breast cells. Here we demonstrate that STAT5 is activated after IL-2 stimulation of two responsive lymphocyte cell lines, Nb2 and YT. Activation of STAT5 is measured both by IL-2-induced tyrosine phosphorylation and by IL-2-induced DNA binding. The STAT5 DNA recognition site is the same as the interferon gamma-activated site (GAS) in the interferon regulatory factor 1 gene. We demonstrate that the GAS element is necessary and sufficient for transcriptional induction by both IL-2 and prolactin in T lymphocytes. These results indicate that the role of STAT5 in the regulation of gene expression is not restricted to mammary cells or to prolactin, but is an integral part of the signal pathway of a critical immunomodulatory cytokine, IL-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interleukin 2 receptor (IL-2R) consists of three subunits, the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two Janus family protein tyrosine kinases (PTKs), Jak1 and Jak3, were shown to associate with IL-2R beta c and IL-2R gamma c, respectively, and their PTK activities are increased after IL-2 stimulation. A Jak3 mutant with truncation of the C-terminal PTK domain lacks its intrinsic kinase activity but can still associate with IL-2R gamma c. In a hematopoietic cell line, F7, that responds to either IL-2 or IL-3, overexpression of this Jak3 mutant results in selective inhibition of the IL-2-induced activation of Jak1/Jak3 PTKs and of cell proliferation. Of the three target nuclear protooncogenes of the IL-2 signaling, c-fos and c-myc genes, but not the bcl-2 gene, were found to be impaired. On the other hand, overexpression of the dominant negative form of the IL-2R gamma c chain, which lacks most of its cytoplasmic domain, in F7 cells resulted in the inhibition of all three protooncogenes. These results provide a further molecular basis for the critical role of Jak3 in IL-2 signaling and also suggest a Jak PTK-independent signaling pathway(s) for the bcl-2 gene induction by IL-2R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania are parasites that survive within macrophages by mechanism(s) not entirely known. Depression of cellular immunity and diminished production of interleukin 1β (IL-1β) and tumor necrosis factor α are potential ways by which the parasite survives within macrophages. We examined the mechanism(s) by which lipophosphoglycan (LPG), a major glycolipid of Leishmania, perturbs cytokine gene expression. LPG treatment of THP-1 monocytes suppressed endotoxin induction of IL-1β steady-state mRNA by greater than 90%, while having no effect on the expression of a control gene. The addition of LPG 2 h before or 2 h after endotoxin challenge significantly suppressed steady-state IL-1β mRNA by 90% and 70%, respectively. LPG also inhibited tumor necrosis factor α and Staphylococcus induction of IL-1β gene expression. The inhibitory effect of LPG is agonist-specific because LPG did not suppress the induction of IL-1β mRNA by phorbol 12-myristate 13-acetate. A unique DNA sequence located within the −310 to −57 nucleotide region of the IL-1β promoter was found to mediate LPG’s inhibitory activity. The requirement for the −310 to −57 promoter gene sequence for LPG’s effect is demonstrated by the abrogation of LPG’s inhibitory activity by truncation or deletion of the −310 to −57 promoter gene sequence. Furthermore, the minimal IL-1β promoter (positions −310 to +15) mediated LPG’s inhibitory activity with dose and kinetic profiles that were similar to LPG’s suppression of steady-state IL-1β mRNA. These findings delineated a promoter gene sequence that responds to LPG to act as a “gene silencer,” a function, to our knowledge, not previously described. LPG’s inhibitory activity for several mediators of inflammation and the persistence of significant inhibitory activity 2 h after endotoxin challenge suggest that LPG has therapeutic potential and may be exploited for therapy of sepsis, acute respiratory distress syndrome, and autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant adenoviral mediated delivery of suicide and cytokine genes has been investigated as a treatment for hepatic metastases of colon carcinoma in mice. Liver tumors were established by intrahepatic implantation of a poorly immunogenic colon carcinoma cell line (MCA-26), which is syngeneic in BALB/c mice. Intratumoral transfer of the herpes simplex virus type 1 thymidine kinase (HSV-tk) and the murine interleukin (mIL)-2 genes resulted in substantial hepatic tumor regression, induced an effective systemic antitumoral immunity in the host and prolonged the median survival time of the treated animals from 22 to 35 days. The antitumoral immunity declined gradually, which led to tumor recurrence over time. A recombinant adenovirus expressing the mIL-12 gene was constructed and tested in the MCA-26 tumor model. Intratumoral administration of this cytokine vector alone increased significantly survival time of the animals with 25% of the treated animals still living over 70 days. These data indicate that local expression of IL-12 may also be an attractive treatment strategy for metastatic colon carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rodent tumor cells engineered to secrete cytokines such as interleukin 2 (IL-2) or IL-4 are rejected by syngeneic recipients due to an enhanced antitumor host immune response. An adenovirus vector (AdCAIL-2) containing the human IL-2 gene has been constructed and shown to direct secretion of high levels of human IL-2 in infected tumor cells. AdCAIL-2 induces regression of tumors in a transgenic mouse model of mammary adenocarcinoma following intratumoral injection. Elimination of existing tumors in this way results in immunity against a second challenge with tumor cells. These findings suggest that adenovirus vectors expressing cytokines may form the basis for highly effective immunotherapies of human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of interleukin 2 (IL-2) as an antineoplastic agent has been limited by the serious toxicities that accompany the doses necessary for a tumor response. Elevation of nitric oxide (NO) and tumor necrosis factor (TNF) both have been implicated in IL-2 toxicities. CNI-1493, a tetravalent guanylhydrazone, is an inhibitor of macrophage activation including the synthesis of TNF and other cytokines. Doses of CNI-1493 as low as 1 mg/kg/day conferred complete protection against fatal toxicity of IL-2 with IL-2 doses tenfold higher than the safely tolerated level in Sprague–Dawley rats. Moreover, typical pathologic changes in the lungs, kidneys, and the liver caused by IL-2 infusion were blocked by cotreatment with CNI-1493. When animals bearing established hepatomas were given IL-2 and CNI-1493 combination therapy, 10 of 10 hepatomas regressed from 1 cm3 to <1 mm3. Intracytoplasmic TNF levels were increased in normal tissues from IL-2 treated animals, and treatment with CNI-1493 maintained TNF at control levels. The degree of apoptosis measured by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling staining of tumors following IL-2 therapy was not reduced compared with IL-2 cotreated with CNI-1493. In contrast, apoptosis in the liver and lung parenchyma following IL-2 therapy was blocked completely by cotreatment with CNI-1493. Taken together, these data showed that low and infrequent doses of CNI-1493 markedly protected animals from IL-2 systemic toxicities whereas not affecting tumor response to IL-2 therapy. With the protection afforded by CNI-1493 treatment, IL-2 therapy dose levels could be increased to provide significant antitumor effects in animals with established hepatomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β2 integrin molecules are involved in a multitude of cellular events, including adhesion, migration, and cellular activation. Here, we studied the influence of β2 integrins on interleukin-2 (IL-2)-mediated signal transduction in human CD4+ T cell lines obtained from healthy donors and a leukocyte adhesion deficiency (LAD) patient. We show that IL-2 induces tyrosine phosphorylation of a 125-kDa protein and homotypic adhesion in β2 integrin (CD18)-positive but not in β2-integrin-negative T cells. EDTA, an inhibitor of integrin adhesion, blocks IL-2-induced tyrosine phosphorylation of the 125-kDa protein but not other proteins in β2-integrin-positive T cells. Likewise, a β2 integrin (CD18) antibody selectively inhibits induction of the 125-kDa phosphotyrosine protein, whereas cytokine-mediated tyrosine phosphorylation of other proteins is largely unaffected. Immunoprecipitation experiments indicate that the IL-2-induced 125-kDa phosphotyrosine protein is the focal adhesion kinase-related protein B (fakB). Thus, IL-2 induces strong tyrosine phosphorylation of fakB in β2-integrin-positive but not in β2-integrin-negative T cells, and CD18 mAb selectively blocks IL-2-induced fakB-tyrosine phosphorylation in β2-integrin-positive T cells. In parallel experiments, IL-2 does not induce or augment tyrosine phosphorylation of p125FAK. In conclusion, our data indicate that IL-2 induces β2-integrin-dependent signal transduction events involving the tyrosine kinase substrate fakB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell receptor ζ (TcRζ)/CD3 ligation initiates a signaling cascade that involves src kinases p56lck and ζ-associated protein 70, leading to the phosphorylation of substrates such as TcRζ, Vav, SH2-domain-containing leukocyte protein 76 (SLP-76), cbl, and p120/130. FYN binding protein (FYB or p120/130) associates with p59fyn, the TcRζ/CD3 complex, and becomes tyrosine-phosphorylated in response to receptor ligation. In this study, we report the cDNA cloning of human and murine FYB and show that it is restricted in expression to T cells and myeloid cells and possesses an overall unique hydrophilic sequence with several tyrosine-based motifs, proline-based type I and type II SH3 domain binding motifs, several putative lysine/glutamic acid-rich nuclear localization motifs, and a SH3-like domain. In addition to binding the src kinase p59fyn, FYB binds specifically to the hematopoietic signaling protein SLP-76, an interaction mediated by the SLP-76 SH2 domain. In keeping with this, expression of FYB augmented interleukin 2 secretion from a T cell hybridoma, DC27.10, in response to TcRζ/CD3 ligation. FYB is therefore a novel hematopoietic protein that acts as a component of the FYN and SLP-76 signaling cascades in T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assembly and mutual proximities of α, β, and γc subunits of the interleukin 2 receptors (IL-2R) in plasma membranes of Kit 225 K6 T lymphoma cells were investigated by fluorescence resonance energy transfer (FRET) using fluorescein isothiocyanate- and Cy3-conjugated monoclonal antibodies (mAbs) that were directed against the IL-2Rα, IL-2Rβ, and γc subunits of IL-2R. The cell-surface distribution of subunits was analyzed at the nanometer scale (2–10 nm) by FRET on a cell-by-cell basis. The cells were probed in resting phase and after coculture with saturating concentrations of IL-2, IL-7, and IL-15. FRET data from donor- and acceptor-labeled IL-2Rβ-α, γ-α, and γ-β pairs demonstrated close proximity of all subunits to each other in the plasma membrane of resting T cells. These mutual proximities do not appear to represent mAb-induced microaggregation, because FRET measurements with Fab fragments of the mAbs gave similar results. The relative proximities were meaningfully modulated by binding of IL-2, IL-7, and IL-15. Based on FRET analysis the topology of the three subunits at the surface of resting cells can be best described by a “triangular model” in the absence of added interleukins. IL-2 strengthens the bridges between the subunits, making the triangle more compact. IL-7 and IL-15 act in the opposite direction by opening the triangle possibly because they associate their private specific α receptors with the β and/or γc subunits of the IL-2R complex. These data suggest that IL-2R subunits are already colocalized in resting T cells and do not require cytokine-induced redistribution. This colocalization is significantly modulated by binding of relevant interleukins in a cytokine-specific manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of nontoxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In bovine adrenal medullary cells synergistically acting type 1 and type 2 angiotensin II (AII) receptors activate the fibroblast growth factor-2 (FGF-2) gene through a unique AII-responsive promoter element. Both the type 1 and type 2 AII receptors and the downstream cyclic adenosine 1′,3′-monophosphate- and protein kinase C-dependent signaling pathways activate the FGF-2 promoter through a novel signal-transducing mechanism. This mechanism, which we have named integrative nuclear FGF receptor-1 signaling, involves the nuclear translocation of FGF receptor-1 and its subsequent transactivation of the AII-responsive element in the FGF-2 promoter.