2 resultados para Interactive Systems

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides an overview of the colloquium's discussion session on natural language understanding, which followed presentations by M. Bates [Bates, M. (1995) Proc. Natl. Acad. Sci. USA 92, 9977-9982] and R. C. Moore [Moore, R. C. (1995) Proc. Natl. Acad. Sci. USA 92, 9983-9988]. The paper reviews the dual role of language processing in providing understanding of the spoken input and an additional source of constraint in the recognition process. To date, language processing has successfully provided understanding but has provided only limited (and computationally expensive) constraint. As a result, most current systems use a loosely coupled, unidirectional interface, such as N-best or a word network, with natural language constraints as a postprocess, to filter or resort the recognizer output. However, the level of discourse context provides significant constraint on what people can talk about and how things can be referred to; when the system becomes an active participant, it can influence this order. But sources of discourse constraint have not been extensively explored, in part because these effects can only be seen by studying systems in the context of their use in interactive problem solving. This paper argues that we need to study interactive systems to understand what kinds of applications are appropriate for the current state of technology and how the technology can move from the laboratory toward real applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate an approach by which some evoked neuronal events can be probed by functional MRI (fMRI) signal with temporal resolution at the time scale of tens of milliseconds. The approach is based on the close relationship between neuronal electrical events and fMRI signal that is experimentally demonstrated in concurrent fMRI and electroencephalographic (EEG) studies conducted in a rat model with forepaw electrical stimulation. We observed a refractory period of neuronal origin in a two-stimuli paradigm: the first stimulation pulse suppressed the evoked activity in both EEG and fMRI signal responding to the subsequent stimulus for a period of several hundred milliseconds. When there was an apparent site–site interaction detected in the evoked EEG signal induced by two stimuli that were primarily targeted to activate two different sites in the brain, fMRI also displayed signal amplitude modulation because of the interactive event. With visual stimulation using two short pulses in the human brain, a similar refractory phenomenon was observed in activated fMRI signals in the primary visual cortex. In addition, for interstimulus intervals shorter than the known latency time of the evoked potential induced by the first stimulus (≈100 ms) in the primary visual cortex of the human brain, the suppression was not present. Thus, by controlling the temporal relation of input tasks, it is possible to study temporal evolution of certain neural events at the time scale of their evoked electrical activity by noninvasive fMRI methodology.