10 resultados para Interactionist postulates

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myofibril formation was visualized in cultured live cardiomyocytes that were transfected with plasmids expressing green fluorescent protein (GFP) linked to the Z-band protein, α-actinin. The expression of this fluorescent protein provided an in vivo label for structures containing α-actinin. The GFP–α-actinin fusion protein was incorporated into Z-bands, intercalated discs, and attachment plaques, as well as into the punctate aggregates, or Z-bodies, that are thought to be the precursors of Z-bands. Observations of live cells over several days in culture permitted us to test aspects of several theories of myofibril assembly that had been proposed previously based on the study of fixed cells. Fine fibrils, called premyofibrils, that formed de novo at the spreading edges of cardiomyocytes, contained punctate concentrations of α-actinin, termed Z-bodies. The punctate Z-bodies grew and aligned with Z-bodies in adjacent fibrils. With increasing time, adjacent fibrils and Z-bodies appeared to fuse and form mature myofibrils and Z-bands in cytoplasmic regions where the linear arrays of Z-bodies had been. These new myofibrils became aligned with existing myofibrils at their Z-bands to form myofibrils that spanned the length of the spread cell. These results are consistent with a model that postulates that the fibrils that form de novo near the cell membrane are premyofibrils—i.e., the precursors of mature myofibrils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied the songbird syrinx more directly by filming it endoscopically. After we surgically incapacitated the MTM as a vibratory source, zebra finches and cardinals were not only able to vocalize, but sang nearly normal song. This result shows clearly that the MTM are not the principal sound source. The endoscopic images of the intact songbird syrinx during spontaneous and brain stimulation-induced vocalizations illustrate the dynamics of syringeal reconfiguration before phonation and suggest a different model for sound production. Phonation is initiated by rostrad movement and stretching of the syrinx. At the same time, the syrinx is closed through movement of two soft tissue masses, the medial and lateral labia, into the bronchial lumen. Sound production always is accompanied by vibratory motions of both labia, indicating that these vibrations may be the sound source. However, because of the low temporal resolution of the imaging system, the frequency and phase of labial vibrations could not be assessed in relation to that of the generated sound. Nevertheless, in contrast to the previous model, these observations show that both labia contribute to aperture control and strongly suggest that they play an important role as principal sound generators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except two. This manipulation produces high activity from the intact whiskers that contrasts with low activity from the cut whiskers while avoiding any nerve damage. By a computational model, we show that the evolution of neuronal responses in a single barrel-column after this sensory bias is consistent with the synaptic modifications that follow the rules of the Bienenstock, Cooper, and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a moving synaptic modification threshold, θM, that dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of its input synapses. The current value of θM changes proportionally to the square of the neuron's activity averaged over some recent past. In the model of alcohol impaired cortex, the effective θM has been set to a level unattainable by the depressed levels of cortical activity leading to “impaired” synaptic plasticity that is consistent with experimental findings. Based on experimental and computational results, we discuss how elevated θM may be related to (i) reduced levels of neurotransmitters modulating plasticity, (ii) abnormally low expression of N-methyl-d-aspartate receptors (NMDARs), and (iii) the membrane translocation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in adult rat cortex subjected to prenatal alcohol exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the forefront of debates on language are new data demonstrating infants' early acquisition of information about their native language. The data show that infants perceptually “map” critical aspects of ambient language in the first year of life before they can speak. Statistical properties of speech are picked up through exposure to ambient language. Moreover, linguistic experience alters infants' perception of speech, warping perception in the service of language. Infants' strategies are unexpected and unpredicted by historical views. A new theoretical position has emerged, and six postulates of this position are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA viruses evolve rapidly. One source of this ability to rapidly change is the apparently high mutation frequency in RNA virus populations. A high mutation frequency is a central tenet of the quasispecies theory. A corollary of the quasispecies theory postulates that, given their high mutation frequency, animal RNA viruses may be susceptible to error catastrophe, where they undergo a sharp drop in viability after a modest increase in mutation frequency. We recently showed that the important broad-spectrum antiviral drug ribavirin (currently used to treat hepatitis C virus infections, among others) is an RNA virus mutagen, and we proposed that ribavirin's antiviral effect is by forcing RNA viruses into error catastrophe. However, a direct demonstration of error catastrophe has not been made for ribavirin or any RNA virus mutagen. Here we describe a direct demonstration of error catastrophe by using ribavirin as the mutagen and poliovirus as a model RNA virus. We demonstrate that ribavirin's antiviral activity is exerted directly through lethal mutagenesis of the viral genetic material. A 99.3% loss in viral genome infectivity is observed after a single round of virus infection in ribavirin concentrations sufficient to cause a 9.7-fold increase in mutagenesis. Compiling data on both the mutation levels and the specific infectivities of poliovirus genomes produced in the presence of ribavirin, we have constructed a graph of error catastrophe showing that normal poliovirus indeed exists at the edge of viability. These data suggest that RNA virus mutagens may represent a promising new class of antiviral drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vascular cambium produces secondary xylem and phloem in plants and is responsible for wood formation in forest trees. In this study we used a microscale mass-spectrometry technique coupled with cryosectioning to visualize the radial concentration gradient of endogenous indole-3-acetic acid (IAA) across the cambial meristem and the differentiating derivatives in Scots pine (Pinus sylvestris L.) trees that had different rates of cambial growth. This approach allowed us to investigate the relationship between growth rate and the concentration of endogenous IAA in the dividing cells. We also tested the hypothesis that IAA is a positional signal in xylem development (C. Uggla, T. Moritz, G. Sandberg, B. Sundberg [1996] Proc Natl Acad Sci USA 93: 9282–9286). This idea postulates that the width of the radial concentration gradient of IAA regulates the radial number of dividing cells in the cambial meristem, which is an important component for determining cambial growth rate. The relationship between IAA concentration in the dividing cells and growth rate was poor, although the highest IAA concentration was observed in the fastest-growing cambia. The radial width of the IAA concentration gradient showed a strong correlation with cambial growth rate. The results indicate that IAA gives positional information in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the functional role of the ribosomal tRNA exit (E) site, two different models have been proposed. It has been suggested that transient E-site binding of the tRNA leaving the peptidyl (P) site promotes elongation factor G (EF-G)-dependent translocation by lowering the energetic barrier of tRNA release [Lill, R., Robertson, J. M. & Wintermeyer, W. (1989) EMBO J. 8, 3933-3938]. The alternative "allosteric three-site model" [Nierhaus, K.H. (1990) Biochemistry 29, 4997-5008] features stable, codon-dependent tRNA binding to the E site and postulates a coupling between E and aminoacyl (A) sites that regulates the tRNA binding affinity of the two sites in an anticooperative manner. Extending our testing of the two conflicting models, we have performed translocation experiments with fully active ribosomes programmed with heteropolymeric mRNA. The results confirm that the deacylated tRNA released from the P site is bound to the E site in a kinetically labile fashion, and that the affinity of binding, i.e., the occupancy of the E site, is increased by Mg2+ or polyamines. At conditions of high E-site occupancy in the posttranslocation complex, filling the A site with aminoacyl-tRNA had no influence on the E site, i.e., there was no detectable anticooperative coupling between the two sites, provided that second-round translocation was avoided by removing EF-G. On the basis of these results, which are entirely consistent with our previous results, we consider the allosteric three-site model of elongation untenable. Rather, as proposed earlier, the E site-bound state of the leaving tRNA is a transient intermediate and, as such, is a mechanistic feature of the classic two-state model of the elongating ribosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cells are inhibited from killing cellular targets by major histocompatibility complex (MHC) class I molecules. In the mouse, this can be mediated by the Ly-49A NK cell receptor that specifically binds the H-2Dd MHC class I molecule, then inhibits NK cell activity. Previous experiments have indicated that Ly-49A recognizes the alpha 1/alpha 2 domains of MHC class I and that no specific MHC-bound peptide appeared to be involved. We demonstrate here that alanine-substituted peptides, having only the minimal anchor motifs, stabilized H-2Dd expression and provided resistance to H-2Dd-transfected, transporter associated with processing (TAP)-deficient cells from lysis by Ly-49A+ NK cells. Peptide-induced resistance was blocked only by an mAb that binds a conformational determinant on H-2Dd. Moreover, stabilization of "empty" H-2Dd heavy chains by exogenous beta 2-microglobulin did not confer resistance. In contrast to data for MHC class I-restricted T cells that are specific for peptides displayed MHC molecules, these data indicate that NK cells are specific for a peptide-induced conformational determinant, independent of specific peptide. This fundamental distinction between NK cells and T cells further implies that NK cells are sensitive only to global changes in MHC class I conformation or expression, rather than to specific pathogen-encoded peptides. This is consistent with the "missing self" hypothesis, which postulates that NK cells survey tissues for normal expression of MHC class I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutation studies have identified a region of the S5-S6 loop of voltage-gated K+ channels (P region) responsible for teraethylammonium (TEA) block and permeation/selectivity properties. We previously modeled a similar region of the Na+ channel as four beta-hairpins with the C strands from each of the domains forming the external vestibule and with charged residues at the beta-turns forming the selectivity filter. However, the K+ channel P region amino acid composition is much more hydrophobic in this area. Here we propose a structural motif for the K+ channel pore based on the following postulates (Kv2.1 numbering). (i) The external TEA binding site is formed by four Tyr-380 residues; P loop residues participating in the internal TEA binding site are four Met-371 and Thr-372 residues. (ii) P regions form extended hairpins with beta-turns in sequence ITMT. (iii) only C ends of hairpins form the inner walls of the pore. (iv) They are extended nonregular strands with backbone carbonyl oxygens of segment VGYGD facing the pore with the conformation BRLRL. (v) Juxtaposition of P loops of the four subunits forms the pore. Fitting the external and internal TEA sites to TEA molecules predicts an hourglass-like pore with the narrowest point (GYG) as wide as 5.5 A, suggesting that selectivity may be achieved by interactions of carbonyls with partially hydrated K+. Other potential cation binding sites also exist in the pore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oncogenic retroviruses carry coding sequences that are transduced from cellular protooncogenes. Natural transduction involves two nonhomologous recombinations and is thus extremely rare. Since transduction has never been reproduced experimentally, its mechanism has been studied in terms of two hypotheses: (i) the DNA model, which postulates two DNA recombinations, and (ii) the RNA model, which postulates a 5' DNA recombination and a 3' RNA recombination occurring during reverse transcription of viral and protooncogene RNA. Here we use two viral DNA constructs to test the prediction of the DNA model that the 3' DNA recombination is achieved by conventional integration of a retroviral DNA 3' of the chromosomal protooncogene coding region. For the DNA model to be viable, such recombinant viruses must be infectious without the purportedly essential polypurine tract (ppt) that precedes the 3' long terminal repeat (LTR) of all retroviruses. Our constructs consist of a ras coding region from Harvey sarcoma virus which is naturally linked at the 5' end to a retroviral LTR and artificially linked at the 3' end either directly (construct NdN) or by a cellular sequence (construct SU) to the 5' LTR of a retrovirus. Both constructs lack the ppt, and the LTR of NdN even lacks 30 nucleotides at the 5' end. Both constructs proved to be infectious, producing viruses at titers of 10(5) focus-forming units per ml. Sequence analysis proved that both viruses were colinear with input DNAs and that NdN virus lacked a ppt and the 5' 30 nucleotides of the LTR. The results indicate that DNA recombination is sufficient for retroviral transduction and that neither the ppt nor the complete LTR is essential for retrovirus replication. DNA recombination explains the following observations by others that cannot be reconciled with the RNA model: (i) experimental transduction is independent of the packaging efficiency of viral RNA, and (ii) experimental transduction may invert sequences with respect to others, as expected for DNA recombination during transfection.