3 resultados para Inter-procedural analysis
em National Center for Biotechnology Information - NCBI
Resumo:
The brain cholecystokinin-B/gastrin receptor (CCK-BR) is a major target for drug development because of its postulated role in modulating anxiety, memory, and the perception of pain. Drug discovery efforts have resulted in the identification of small synthetic molecules that can selectively activate this receptor subtype. These drugs include the peptide-derived compound PD135,158 as well as the nonpeptide benzodiazepine-based ligand, L-740,093 (S enantiomer). We now report that the maximal level of receptor-mediated second messenger signaling that can be achieved by these compounds (drug efficacy) markedly differs among species homologs of the CCK-BR. Further analysis reveals that the observed differences in drug efficacy are in large part explained by single or double aliphatic amino acid substitutions between respective species homologs. This interspecies variability in ligand efficacy introduces the possibility of species differences in receptor-mediated function, an important consideration when selecting animal models for preclinical drug testing. The finding that even single amino acid substitutions can significantly affect drug efficacy prompted us to examine ligand-induced signaling by a known naturally occurring human CCK-BR variant (glutamic acid replaced by lysine in position 288; 288E → K). When examined using the 288E → K receptor, the efficacies of both PD135,158 and L-740,093 (S) were markedly increased compared with values obtained with the wild-type human protein. These observations suggest that functional variability resulting from human receptor polymorphisms may contribute to interindividual differences in drug effects.
Resumo:
DNA fragments with stretches of cytosine residues can fold into four-stranded structures in which two parallel duplexes, held together by hemiprotonated cytosine.cytosine+ (C.C+) base pairs, intercalate into each other with opposite polarity. The structural details of this intercalated DNA quadruplex have been assessed by solution NMR and single crystal x-ray diffraction studies of cytosine-rich sequences, including those present in metazoan telomeres. A conserved feature of these structures is the absence of stabilizing stacking interactions between the aromatic ring systems of adjacent C.C+ base pairs from intercalated duplexes. Effective stacking involves only the exocyclic keto groups and amino groups of the cytidine bases. The apparent absence of stability provided by stacking interactions between the bases in this intercalated DNA has prompted us to examine the available structures in detail, in particular with regard to unusual features that could compensate for the lack of base stacking. In addition to base-on-deoxyribose stacking and intra-cytidine C-H...O hydrogen bonds, this analysis reveals the presence of a hitherto unobserved, systematic intermolecular C-H...O hydrogen bonding network between the deoxyribose sugar moieties of antiparallel backbones in the four-stranded molecule.
Resumo:
We have investigated genetic differences between the closely related pathogenic Neisseria species, Neisseria meningitidis and Neisseria gonorrhoeae, as a novel approach to the elucidation of the genetic basis for their different pathogenicities. N. meningitidis is a major cause of cerebrospinal meningitis, whereas N. gonorrhoeae is the agent of gonorrhoea. The technique of representational difference analysis was adapted to the search for genes present in the meningococcus but absent from the gonococcus. The libraries achieved are comprehensive and specific in that they contain sequences corresponding to the presently identified meningococcus-specific genes (capsule, frp, rotamase, and opc) but lack genes more or less homologous between the two species, e.g., ppk and pilC1. Of 35 randomly chosen clones specific to N. meningitidis, DNA sequence analysis has confirmed that the large majority have no homology with published neisserial sequences. Mapping of the cloned DNA fragments onto the chromosome of N. meningitidis strain Z2491 has revealed a nonrandom distribution of meningococcus-specific sequences. Most of the genetic differences between the meningococcus and gonococcus appear to be clustered in three distinct regions, one of which (region 1) contains the capsule-related genes. Region 3 was found only in strains of serogroup A, whereas region 2 is present in a variety of meningococci belonging to different serogroups. At a time when bacterial genomes are being sequenced, we believe that this technique is a powerful tool for a rapid and directed analysis of the genetic basis of inter- or intraspecific phenotypic variations.