2 resultados para Insulin Sensitivity
em National Center for Biotechnology Information - NCBI
Resumo:
Sustained hyperleptinemia of 8 ng/ml was induced for 28 days in normal Wistar rats by infusing a recombinant adenovirus containing the rat leptin cDNA (AdCMV-leptin). Hyperleptinemic rats exhibited a 30–50% reduction in food intake and gained only 22 g over the experimental period versus 115–132 g in control animals that received saline infusions or a recombinant virus containing the β-galactosidase gene (AdCMV-βGal). Body fat was absent in hyperleptinemic rats, whereas control rats pair-fed to the hyperleptinemic rats retained ≈50% body fat. Further, plasma triglycerides and insulin levels were significantly lower in hyperleptinemic versus pair-fed controls, while fatty acid and glucose levels were similar in the two groups, suggestive of enhanced insulin sensitivity in the hyperleptinemic animals. Thus, despite equivalent reductions in food intake and weight gain in hyperleptinemic and pair-fed animals, identifiable fat tissue was completely ablated only in the former group, raising the possibility of a specific lipoatrophic activity for leptin.
Resumo:
Certain peptides derived from the α1 domain of the major histocompatibility class I antigen complex (MHC-I) inhibit receptor internalization, increasing the steady-state number of active receptors on the cell surface and thereby enhancing the sensitivity to hormones and other agonists. These peptides self-assemble, and they also bind to MHC-I at the same site from which they are derived, suggesting that they could bind to receptor sites with significant sequence similarity. Receptors affected by MHC-I peptides do, indeed, have such sequence similarity, as illustrated here by insulin receptor (IR) and insulin-like growth factor-1 receptor. A synthetic peptide with sequence identical to a certain extracellular receptor domain binds to that receptor in a ligand-dependent manner and inhibits receptor internalization. Moreover, each such peptide is selective for its cognate receptor. An antibody to the IR peptide not only binds to IR and competes with the peptide but also inhibits insulin-dependent internalization of IR. These observations, and binding studies with deletion mutants of IR, indicate that the sequence QILKELEESSF encoded by exon 10 plays a key role in IR internalization. Our results illustrate a principle for identifying receptor-specific sites of importance for receptor internalization, and for enhancing sensitivity to hormones and other agonists.