11 resultados para Information theory in biology

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A molecular model of poorly understood hydrophobic effects is heuristically developed using the methods of information theory. Because primitive hydrophobic effects can be tied to the probability of observing a molecular-sized cavity in the solvent, the probability distribution of the number of solvent centers in a cavity volume is modeled on the basis of the two moments available from the density and radial distribution of oxygen atoms in liquid water. The modeled distribution then yields the probability that no solvent centers are found in the cavity volume. This model is shown to account quantitatively for the central hydrophobic phenomena of cavity formation and association of inert gas solutes. The connection of information theory to statistical thermodynamics provides a basis for clarification of hydrophobic effects. The simplicity and flexibility of the approach suggest that it should permit applications to conformational equilibria of nonpolar solutes and hydrophobic residues in biopolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proneural genes encode basic-helix–loop–helix (bHLH) proteins and promote the formation of distinct types of sensory organs. In Drosophila, two sets of proneural genes, atonal (ato) and members of the achaete–scute complex (ASC), are required for the formation of chordotonal (ch) organs and external sensory (es) organs, respectively. We assayed the production of sensory organs in transgenic flies expressing chimeric genes of ato and scute (sc), a member of ASC, and found that the information that specifies ch organs resides in the bHLH domain of ato; chimeras containing the b domain of ato and the HLH domain of sc also induced ch organ formation, but to a lesser extent than those containing the bHLH domain of ato. The b domains of ato and sc differ in seven residues. Mutations of these seven residues in the b domain of ato suggest that most or perhaps all of these residues are required for induction of ch organs. None of these seven residues is predicted to contact DNA directly by computer simulation using the structure of the myogenic factor MyoD as a model, implying that interaction of ato with other cofactors is likely to be involved in neuronal type specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the level of the cochlear nucleus (CN), the auditory pathway divides into several parallel circuits, each of which provides a different representation of the acoustic signal. Here, the representation of the power spectrum of an acoustic signal is analyzed for two CN principal cells—chopper neurons of the ventral CN and type IV neurons of the dorsal CN. The analysis is based on a weighting function model that relates the discharge rate of a neuron to first- and second-order transformations of the power spectrum. In chopper neurons, the transformation of spectral level into rate is a linear (i.e., first-order) or nearly linear function. This transformation is a predominantly excitatory process involving multiple frequency components, centered in a narrow frequency range about best frequency, that usually are processed independently of each other. In contrast, type IV neurons encode spectral information linearly only near threshold. At higher stimulus levels, these neurons are strongly inhibited by spectral notches, a behavior that cannot be explained by level transformations of first- or second-order. Type IV weighting functions reveal complex excitatory and inhibitory interactions that involve frequency components spanning a wider range than that seen in choppers. These findings suggest that chopper and type IV neurons form parallel pathways of spectral information transmission that are governed by two different mechanisms. Although choppers use a predominantly linear mechanism to transmit tonotopic representations of spectra, type IV neurons use highly nonlinear processes to signal the presence of wide-band spectral features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA and RNA are the polynucleotides known to carry genetic information in life. Chemical variants of DNA and RNA backbones have been used in structure-function and biosynthesis studies in vitro, and in antisense pharmacology, where their properties of nuclease resistance and enhanced cellular uptake are important. This study addressed the question of whether the base(s) attached to artificial backbones encodes genetic information that can be transferred in vivo. Oligonucleotides containing chemical variants of DNA or RNA were used as primers for site-specific mutagenesis of bacteriophage f1. Progeny phage were scored both genetically and physically for the inheritance of information originally encoded by bases attached to the nonstandard backbones. Four artificial backbone chemistries were tested: phosphorothioate DNA, phosphorothioate RNA, 2'-O-methyl RNA and methylphosphonate DNA. All four were found capable of faithful information transfer from their attached bases when one or three artificial positions were flanked by normal DNA. Among oligonucleotides composed entirely of nonstandard backbones, only phosphorothioate DNA supported genetic information transfer in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine decision making in two-person extensive form game trees using nine treatments that vary matching protocol, payoffs, and payoff information. Our objective is to establish replicable principles of cooperative versus noncooperative behavior that involve the use of signaling, reciprocity, and backward induction strategies, depending on the availability of dominated direct punishing strategies and the probability of repeated interaction with the same partner. Contrary to the predictions of game theory, we find substantial support for cooperation under complete information even in various single-play treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a unifying theory of hypoxia tolerance based on information from two cell level models (brain cortical cells and isolated hepatocytes) from the highly anoxia tolerant aquatic turtle and from other more hypoxia sensitive systems. We propose that the response of hypoxia tolerant systems to oxygen lack occurs in two phases (defense and rescue). The first lines of defense against hypoxia include a balanced suppression of ATP-demand and ATP-supply pathways; this regulation stabilizes (adenylates) at new steady-state levels even while ATP turnover rates greatly decline. The ATP demands of ion pumping are down-regulated by generalized "channel" arrest in hepatocytes and by "spike" arrest in neurons. Hypoxic ATP demands of protein synthesis are down-regulated probably by translational arrest. In hypoxia sensitive cells this translational arrest seems irreversible, but hypoxia-tolerant systems activate "rescue" mechanisms if the period of oxygen lack is extended by preferentially regulating the expression of several proteins. In these cells, a cascade of processes underpinning hypoxia rescue and defense begins with an oxygen sensor (a heme protein) and a signal-transduction pathway, which leads to significant gene-based metabolic reprogramming-the rescue process-with maintained down-regulation of energy-demand and energy-supply pathways in metabolism throughout the hypoxic period. This recent work begins to clarify how normoxic maintenance ATP turnover rates can be drastically (10-fold) down-regulated to a new hypometabolic steady state, which is prerequisite for surviving prolonged hypoxia or anoxia. The implications of these developments are extensive in biology and medicine.