3 resultados para Information processing
em National Center for Biotechnology Information - NCBI
Resumo:
Whenever we open our eyes, we are confronted with an overwhelming amount of visual information. Covert attention allows us to select visual information at a cued location, without eye movements, and to grant such information priority in processing. Covert attention can be voluntarily allocated, to a given location according to goals, or involuntarily allocated, in a reflexive manner, to a cue that appears suddenly in the visual field. Covert attention improves discriminability in a wide variety of visual tasks. An important unresolved issue is whether covert attention can also speed the rate at which information is processed. To address this issue, it is necessary to obtain conjoint measures of the effects of covert attention on discriminability and rate of information processing. We used the response-signal speed-accuracy tradeoff (SAT) procedure to derive measures of how cueing a target location affects speed and accuracy in a visual search task. Here, we show that covert attention not only improves discriminability but also accelerates the rate of information processing.
Resumo:
Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.
Self-organized phase transitions in neural networks as a neural mechanism of information processing.
Resumo:
Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.