3 resultados para Infection prevention
em National Center for Biotechnology Information - NCBI
Resumo:
The identification of the neutralization domains of hepatitis C virus (HCV) is essential for the development of an effective vaccine. Here, we show that the hypervariable region 1 (HVR1) of the envelope 2 (E2) protein is a critical neutralization domain of HCV. Neutralization of HCV in vitro was attempted with a rabbit hyperimmune serum raised against a homologous synthetic peptide derived from the HVR1 of the E2 protein, and the residual infectivity was evaluated by inoculation of HCV-seronegative chimpanzees. The source of HCV was plasma obtained from a patient (H) during the acute phase of posttransfusion non-A, non-B hepatitis, which had been titered for infectivity in chimpanzees. The anti-HVR1 antiserum induced protection against homologous HCV infection in chimpanzees, but not against the emergence of neutralization escape mutants that were found to be already present in the complex viral quasispecies of the inoculum. The finding that HVR1 can elicit protective immunity opens new perspectives for the development of effective preventive strategies. However, the identification of the most variable region of HCV as a critical neutralization domain poses a major challenge for the development of a broadly reactive vaccine against HCV.
Resumo:
Objectives: To estimate the incidence of HIV and hepatitis C virus and risk factors for seroconversion among a cohort of injecting drug users.
Resumo:
A genetic defect in a CC-chemokine receptor (CCR)-5, the principal coreceptor for the macrophage-tropic HIV type 1 (HIV-1), recently was found to naturally protect CCR-5-defective, but healthy, individuals from HIV-1 infection. In this study, we mimic the natural resistance of the CCR-5-defective individuals by designing a strategy to phenotypically knock out CCR-5. The inactivation of the CCR-5 coreceptor is accomplished by targeting a modified CC-chemokine to the endoplasmic reticulum to block the surface expression of newly synthesized CCR-5. The lymphocytes transduced to express the intracellular chemokine, termed “intrakine,” were found to be viable and resistant to macrophage-tropic HIV-1 infection. Thus, this gene-based intrakine strategy targeted at the conserved cellular receptor for the prevention of HIV-1 entry should have significant advantages over currently described approaches for HIV-1 therapy.