41 resultados para Inbred Lew

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pseudoautosomal region (PAR) is a segment of shared homology between the sex chromosomes. Here we report additional probes for this region of the mouse genome. Genetic and fluorescence in situ hybridization analyses indicate that one probe, PAR-4, hybridizes to the pseudoautosomal telomere and a minor locus at the telomere of chromosome 9 and that a PCR assay based on the PAR-4 sequence amplifies only the pseudoautosomal locus (DXYHgu1). The region detected by PAR-4 is structurally unstable; it shows polymorphism both between mouse strains and between animals of the same inbred strain, which implies an unusually high mutation rate. Variation occurs in the region adjacent to a (TTAGGG)n array. Two pseudoautosomal probes can also hybridize to the distal telomeres of chromosomes 9 and 13, and all three telomeres contain DXYMov15. The similarity between these telomeres may reflect ancestral telomere-telomere exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of cholesterol gallstones differs among inbred strains of mice fed a diet containing 15% (wt/wt) dairy fat, 1% (wt/wt) cholesterol, and 0.5% (wt/wt) cholic acid. Strains C57L, SWR, and A were notable for a high prevalence of cholelithiasis; strains C57BL/6, C3H, and SJL had an intermediate prevalence; and strains SM, AKR, and DBA/2 exhibited no cholelithiasis after consuming the diet for 18 weeks. Genetic analysis of the difference in gallstone prevalence rates between strains AKR and C57L was carried out by using the AKXL recombinant inbred strain set and (AKR x C57L)F1 x AKR backcross mice. Susceptibility to gallstone formation was found to be a dominant trait determined by at least two genes. A major gene, named Lith1, mapped to mouse chromosome 2. When examined after 6 weeks on the lithogenic diet, the activity of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (EC 1.1.1.88) was downregulated as expected in the gallstone-resistant strains, AKR and SJL, but this enzyme failed to downregulate in C57L and SWR, the gallstone-susceptible strains. This suggests that regulation of the rate-limiting enzyme in cholesterol biosynthesis may be pivotal in determining the occurrence and severity of cholesterol hypersecretion and hence lithogenicity of gallbladder bile. These studies indicate that genetic factors are critical in determining gallstone formation and that the genetic resources of the mouse model may permit these factors to be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to exploit bacterial artificial chromosomes (BAC) as large antigen-capacity DNA vaccines (BAC-VAC) against complex pathogens, such as herpes simplex virus 1 (HSV-1). The 152-kbp HSV-1 genome recently has been cloned as an F-plasmid-based BAC in Escherichia coli (fHSV), which can efficiently produce infectious virus progeny upon transfection into mammalian cells. A safe modification of fHSV, fHSVΔpac, does not give rise to progeny virus because the signals necessary to package DNA into virions have been excluded. However, in mammalian cells fHSVΔpac DNA can still replicate, express the HSV-1 genes, cause cytotoxic effects, and produce virus-like particles. Because these functions mimic the lytic cycle of the HSV-1 infection, fHSVΔpac was expected to stimulate the immune system as efficiently as a modified live virus vaccine. To test this hypothesis, mice were immunized with fHSVΔpac DNA applied intradermally by gold-particle bombardment, and the immune responses were compared with those induced by infection with disabled infectious single cycle HSV-1. Immunization with either fHSVΔpac or disabled infectious single cycle HSV-1 induced the priming of HSV-1-specific cytotoxic T cells and the production of virus-specific antibodies and conferred protection against intracerebral injection of wild-type HSV-1 at a dose of 200 LD50. Protection probably was cell-mediated, as transfer of serum from immunized mice did not protect naive animals. We conclude that BAC-VACs per se, or in combination with genetic elements that support replicative amplification of the DNA in the cell nucleus, represent a useful new generation of DNA-based vaccination strategies for many viral and nonviral antigens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two major mechanisms reported to prevent the autoreactivity of islet-specific CD8+ T cells: ignorance and tolerance. When ignorance is operative, naïve autoreactive CD8+ T cells ignore islet antigens and recirculate without causing damage, unless activated by an external stimulus. In the case of tolerance, CD8+ T cells are deleted. Which factor(s) contributes to each particular outcome was previously unknown. Here, we demonstrate that the concentration of self antigen determines which mechanism operates. When ovalbumin (OVA) was expressed at a relatively low concentration in the pancreatic islets of transgenic mice, there was no detectable cross-presentation, and the CD8+ T cell compartment remained ignorant of OVA. In mice expressing higher doses of OVA, cross-presentation was detectable and led to peripheral deletion of OVA-specific CD8+ T cells. When cross-presentation was prevented by reconstituting the bone marrow compartment with cells incapable of presenting OVA, deletional tolerance was converted to ignorance. Thus, the immune system uses two strategies to avoid CD8+ T cell-mediated autoimmunity: for high dose antigens, it deletes autoreactive T cells, whereas for lower dose antigens, it relies on ignorance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Senescence, the decline in survivorship and fertility with increasing age, is a near-universal property of organisms. Senescence and limited lifespan are thought to arise because weak natural selection late in life allows the accumulation of mutations with deleterious late-age effects that are either neutral (the mutation accumulation hypothesis) or beneficial (the antagonistic pleiotropy hypothesis) early in life. Analyses of Drosophila spontaneous mutations, patterns of segregating variation and covariation, and lines selected for late-age fertility have implicated both classes of mutation in the evolution of aging, but neither their relative contributions nor the properties of individual loci that cause aging in nature are known. To begin to dissect the multiple genetic causes of quantitative variation in lifespan, we have conducted a genome-wide screen for quantitative trait loci (QTLs) affecting lifespan that segregate among a panel of recombinant inbred lines using a dense molecular marker map. Five autosomal QTLs were mapped by composite interval mapping and by sequential multiple marker analysis. The QTLs had large sex-specific effects on lifespan and age-specific effects on survivorship and mortality and mapped to the same regions as candidate genes with fertility, cellular aging, stress resistance and male-specific effects. Late age-of-onset QTL effects are consistent with the mutation accumulation hypothesis for the evolution of senescence, and sex-specific QTL effects suggest a novel mechanism for maintaining genetic variation for lifespan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to identify, isolate, and transplant progenitor cells from solid tissues would greatly facilitate the treatment of diseases currently requiring whole organ transplantation. In this study, cell fractions enriched in candidate epithelial progenitor cells from the rat pancreas were isolated and transplanted into the liver of an inbred strain of Fischer rats. Using a dipeptidyl dipeptidase IV genetic marker system to follow the fate of transplanted cells in conjunction with albumin gene expression, we provide conclusive evidence that, after transplantation to the liver, epithelial progenitor cells from the pancreas differentiate into hepatocytes, express liver-specific proteins, and become fully integrated into the liver parenchymal structure. These studies demonstrate the presence of multipotent progenitor cells in the adult pancreas and establish a role for the liver microenvironment in the terminal differentiation of epithelial cells of foregut origin. They further suggest that such progenitor cells might be useful in studies of organ repopulation following acute or chronic liver injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1–8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22–6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12–20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by production of autoantibodies against intracellular antigens including DNA, ribosomal P, Ro (SS-A), La (SS-B), and the spliceosome. Etiology is suspected to involve genetic and environmental factors. Evidence of genetic involvement includes: associations with HLA-DR3, HLA-DR2, Fcγ receptors (FcγR) IIA and IIIA, and hereditary complement component deficiencies, as well as familial aggregation, monozygotic twin concordance >20%, λs > 10, purported linkage at 1q41–42, and inbred mouse strains that consistently develop lupus. We have completed a genome scan in 94 extended multiplex pedigrees by using model-based linkage analysis. Potential [log10 of the odds for linkage (lod) > 2.0] SLE loci have been identified at chromosomes 1q41, 1q23, and 11q14–23 in African-Americans; 14q11, 4p15, 11q25, 2q32, 19q13, 6q26–27, and 12p12–11 in European-Americans; and 1q23, 13q32, 20q13, and 1q31 in all pedigrees combined. An effect for the FcγRIIA candidate polymorphism) at 1q23 (lod = 3.37 in African-Americans) is syntenic with linkage in a murine model of lupus. Sib-pair and multipoint nonparametric analyses also support linkage (P < 0.05) at nine loci detected by using two-point lod score analysis (lod > 2.0). Our results are consistent with the presumed complexity of genetic susceptibility to SLE and illustrate racial origin is likely to influence the specific nature of these genetic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsyndromic clefting of the lip and palate in humans has a highly complex etiology, with both multiple genetic loci and exposure to teratogens influencing susceptibility. Previous studies using mouse models have examined only very small portions of the genome. Here we report the findings of a genome-wide search for susceptibility genes for teratogen-induced clefting in the AXB and BXA set of recombinant inbred mouse strains. We compare results obtained using phenytoin (which induces cleft lip) and 6-aminonicotinamide (which induces cleft palate). We use a new statistical approach based on logistic regression suitable for these categorical data to identify several chromosomal regions as possible locations of clefting susceptibility loci, and we review candidate genes located within each region. Because cleft lip and cleft palate do not frequently co-aggregate in human families and because these structures arise semi-independently during development, these disorders are usually considered to be distinct in etiology. Our data, however, implicate several of the same chromosomal regions for both forms of clefting when teratogen-induced. Furthermore, different parental strain alleles are usually associated with clefting of the lip versus that of the palate (i.e., allelic heterogeneity). Because several other chromosomal regions are associated with only one form of clefting, locus heterogeneity also appears to be involved. Our findings in this mouse model suggest several priority areas for evaluation in human epidemiological studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunizations of mice with plasmid DNAs encoding ovalbumin (OVA), human Ig, and hen egg lysozyme were compared with doses of soluble protein (without adjuvant) that induced similar IgG responses. The route of immunization influenced the magnitude of the antibody (Ab) response in that intradermal (i.d.) injection elicited higher IgG Ab levels than i.m. injection in both DNA- and protein-immunized mice. Although total IgG levels were similar to soluble protein controls, the avidity of the anti-OVA Abs generated by DNA immunization were 100- and 1,000-fold higher via the i.m. or i.d. route, respectively. However, despite the generation of high-avidity Ab in DNA-immunized mice, germinal centers could not be detected in either DNA- or protein-immunized mice. Examination of the IgG subclass response showed that IgG2a was induced by i.m. DNA immunization, coinciding with elevated interferon γ production, whereas a dominant and elevated IgG1 response, coinciding with detectable interleukin 4 production, was generated after i.d. immunization with DNA or soluble OVA and hen egg lysozyme but not human Ig protein. As expected, cytotoxic T cell (CTL) responses could be detected only after DNA immunization. I.d. immunization produced the strongest CTL responses early (2 weeks) but was similar to i.m. later. Therefore, DNA immunization can differ from protein immunization by its ability to induce rapid CTL responses and higher avidity Ab, both of which are advantageous for vaccination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the development of an insulin autoantibody (IAA) assay performed in 96-well filtration plates, we have evaluated prospectively the development of IAA in NOD mice (from 4 weeks of age) and children (from 7 to 10 months of age) at genetic risk for the development of type 1 diabetes. NOD mice had heterogeneous expression of IAA despite being inbred. IAA reached a peak between 8 and 16 weeks and then declined. IAA expression by NOD mice at 8 weeks of age was strongly associated with early development of diabetes, which occurred at 16–18 weeks of age (NOD mice IAA+ at 8 weeks: 83% (5/6) diabetic by 18 weeks versus 11% (1/9) of IAA negative at 8 weeks; P < .01). In man, IAA was frequently present as early as 9 months of age, the first sampling time. Of five children found to have persistent IAA before 1 year of age, four have progressed to diabetes (all before 3.5 years of age) and the fifth is currently less than age 2. Of the 929 children not expressing persistent IAA before age 1, only one has progressed to diabetes to date (age onset 3), and this child expressed IAA at his second visit (age 1.1). In new onset patients, the highest levels of IAA correlated with an earlier age of diabetes onset. Our data suggest that the program for developing diabetes of NOD mice and humans is relatively “fixed” early in life and, for NOD mice, a high risk of early development of diabetes is often determined by 8 weeks of age. With such early determination of high risk of progression to diabetes, immunologic therapies in humans may need to be tested in children before the development of IAA for maximal efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC50), assessed by parasite incorporation of [3H]hypoxanthine, were between 0.2 and 1.1 μM. CLT concentrations of 2 μM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (≈48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 μM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inbred 129 strain mice are predisposed to developing male germ cell tumors (GCTs) of the testes. The inherent genetic defects that underlie male GCT susceptibility in the 129 mouse strain are unknown. GCT incidence is increased in 129 strain males that lack functional p53 protein, and we have used this finding to facilitate the generation of panels of GCT-bearing intercross and backcross mice for genetic mapping analysis. A 129 strain locus, designated pgct1, that segregates with the male GCT phenotype has been identified on chromosome 13 near D13Mit188. This region of murine chromosome 13 may be syntenic to a portion of human chromosome 5q that is implicated in male GCT susceptibility in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possible molecular basis for the previously described antagonistic interactions between adenosine A1 receptors (A1R) and dopamine D1 receptors (D1R) in the brain have been studied in mouse fibroblast Ltk− cells cotransfected with human A1R and D1R cDNAs or with human A1R and dopamine D2 receptor (long-form) (D2R) cDNAs and in cortical neurons in culture. A1R and D1R, but not A1R and D2R, were found to coimmunoprecipitate in cotransfected fibroblasts. This selective A1R/D1R heteromerization disappeared after pretreatment with the D1R agonist, but not after combined pretreatment with D1R and A1R agonists. A high degree of A1R and D1R colocalization, demonstrated in double immunofluorescence experiments with confocal laser microscopy, was found in both cotransfected fibroblast cells and cortical neurons in culture. On the other hand, a low degree of A1R and D2R colocalization was observed in cotransfected fibroblasts. Pretreatment with the A1R agonist caused coclustering (coaggregation) of A1R and D1R, which was blocked by combined pretreatment with the D1R and A1R agonists in both fibroblast cells and in cortical neurons in culture. Combined pretreatment with D1R and A1R agonists, but not with either one alone, substantially reduced the D1R agonist-induced accumulation of cAMP. The A1R/D1R heteromerization may be one molecular basis for the demonstrated antagonistic modulation of A1R of D1R receptor signaling in the brain. The persistence of A1R/D1R heteromerization seems to be essential for the blockade of A1R agonist-induced A1R/D1R coclustering and for the desensitization of the D1R agonist-induced cAMP accumulation seen on combined pretreatment with D1R and A1R agonists, which indicates a potential role of A1R/D1R heteromers also in desensitization mechanisms and receptor trafficking.